File size: 38,108 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"\n",
"# ## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr]\n",
"\n",
"## Install TorchAudio\n",
"!pip install torchaudio -f https://download.pytorch.org/whl/torch_stable.html"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Introduction to Speaker Diarization\n",
"Speaker diarization is the task of segmenting audio recordings by speaker labels and answers the question \"Who Speaks When?\". A speaker diarization system consists of Voice Activity Detection (VAD) model to get the timestamps of audio where speech is being spoken ignoring the background and speaker embeddings model to get speaker embeddings on segments that were previously time stamped. These speaker embedding vectors are then grouped into clusters and the number of speakers is estimated by clustering algorithm. Finally, based on the speaker profiles created from clustering results, neural diarizer generates speaker labels including overlap speech. The below figure shows the data-flow of NeMo speaker diarization."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/diar_pipeline.png\" alt=\"diar_pipeline\" style=\"width: 800px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This tutorial covers speaker diarization inference. We will cover how to setup configurations and launch NeMo speaker diarization system with a few different settings. NeMo speaker diarization pipline includes the following steps as described in the above figure: VAD, Segmentation, Speaker Embedding Extraction, Clustering and Neural Diarizer. We will explain what each module does and we will run NeMo speaker diarization system on a small toy example. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### VAD for Speaker Diarization Tasks\n",
"\n",
"In NeMo toolkit we support two types of speaker diarization inference regarding VAD: \n",
"* **with oracle VAD**: use ground-truth speech/non-speech labels. \n",
"* **with system VAD**: use speech/non-speech labels generated by an actual VAD model. \n",
"\n",
"We will first demonstrate how to perform diarization with a oracle VAD timestamps (we assume we already have speech timestamps) and pretrained speaker embedding extractor model which can be found in tutorial for [Speaker Identification and Verification in NeMo](https://github.com/NVIDIA/NeMo/blob/main/tutorials/speaker_tasks/Speaker_Identification_Verification.ipynb).\n",
"\n",
"In the following section, we will also show how to perform VAD and then diarization if ground truth timestamp speech were not available (non-oracle VAD). We also have tutorials for [VAD training in NeMo](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/Voice_Activity_Detection.ipynb) and [online offline microphone inference](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/Online_Offline_Microphone_VAD_Demo.ipynb), where you can custom your model and training/finetuning on your own data.\n",
"\n",
"For demonstration purposes we would be using simulated audio from [an4 dataset](http://www.speech.cs.cmu.edu/databases/an4/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Multi-scale Approach for Segmentation, Speaker Embedding Extraction and Clustering\n",
"\n",
"#### Uniform Segmentation\n",
"After the input signal goes through VAD module, we extract speaker embeddings from segmented audio then we extract speaker embedding vector from each and every segment. When we segment audio signal into short (0.5~3.0 sec) segments, we get speaker profile (speaker representation) for the specific segment. When it comes to segment length, there is trade-off between the quality of speaker representation and granularity (temporal resolution). \n",
"\n",
"#### Trade-off: Long VS Short Segment Length\n",
"If we use long segments (e.g. longer than 2-3 seconds), we get fairly consistent and high-quality speaker representations but at the same time, we lose temporal resolution since we need to make a decision on the 2~3 second long segment which can lead to significant errors. On the other hand, if we use very short segments (0.2-0.5 sec), temporal resolution is superior but it is very challenging to extract reliable speaker characteristics from such short speech segments.\n",
"\n",
"#### Multiscale Segmentation\n",
"In NeMo speaker diarization pipeline, we employ multi-scale approach to deal with such a trade-off between long and short segment lengths. We use multiple scales (segment lengths) and fuse the affinity values from each scale's result. An example of multi-scale segmentation looks like the following figure:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/multiscale_example.png\" alt=\"diar_pipeline\" style=\"width: 600px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The finest scale, which has the shortest segment length, is called __base scale__ and base scale is assigned to the highest scale index. Note that we integrate the information from all scales but only make decisions based on base scale's segment range.\n",
"\n",
"During multi-scale segmentation process, the mapping among scales should be calculated. The middle point of each segment is considered as an anchor point and matched with other scales to have the shortest distance between two middle points from the two segments. In the above figure, the blue outline shows an example of how multi-scale segmentation and mapping is determined."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Weighted Sum of Scale-specific Affinity Matrices "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The information from each scale is combined by calculating the weighted sum of affininty matrix. An affinity matrix is calculated by cosine similarity value between all the segments (and corresponding embedding vectors) in that scale. Once affinity matrix for each sacle is calculated, we calculate a weighted sum on all the affinity matrices calculated as in the below figure."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/affinity_matrix_fusion.png\" alt=\"diar_pipeline\" style=\"width: 800px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The weighted sum is calculated by using `multiscale_weights` parameter. We feed the fused affinity matrix (weighted sum of affinity matrix) to clustering algorithm to group the speakers and count the number of speakers. Multi-scale approach not only reduces DER but also makes speaker counting more accurate during clustering process. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Configurations for Multiscale Diarization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" We use a default multi-scale setting in [diar_infer_telephonic.yaml](https://github.com/NVIDIA/NeMo/blob/main/examples/speaker_tasks/diarization/conf/inference/diar_infer_telephonic.yaml) which has 5 scales from 1.5 s to 0.5 s, 50% overlap and equal weights. Note that only the ratio between numbers in `multiscale_weights` since the fused affinity matrix is normalized. For example, \\[1,1,1,1,1\\] and \\[0.5,0.5,0.5,0.5,0.5\\] will lead to the exactly same result."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* `config.diarizer.speaker_embeddings.parameters.window_length_in_sec = [1.5,1.25,1.0,0.75,0.5]`\n",
"* `config.diarizer.speaker_embeddings.parameters.shift_length_in_sec = [0.75,0.625,0.5,0.375,0.1]`\n",
"* `diarizer.speaker_embeddings.parameters.multiscale_weights=[1,1,1,1,1]` "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that an MSDD model has a pre-defined set of multi-scale configurations and clustering should be done with the same multi-scale configuration."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Neural Diarizer: Multiscale Diarization Decoder"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Neural Diarizer\n",
"In NeMo speaker diarization pipeline, the term **neural diarizer** referes to trainable neural modules that estimate speaker labels from the given feature or audio input. Neural diarizer contrasts with **clustering diarizer** in a way that clustering diarizer is not a trainable module. Neural diarizer is needed to enable overlap-aware diarization, more improved accucy and joint training with speaker embedding models using multispeaker datasets (diarization training datasets).\n",
"\n",
"#### Multi-scale Diarization Decoder (MSDD)\n",
"Currently, you can use Multi-scale Diarization Decoder (MSDD) model as a neural diarizer. MSDD models use clustering diarizer for obtaining the estimated speaker profile of each speaker and the estimated number of speakers. The below figure shows training and inference of MSDD model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/msdd_train_and_infer.png\" alt=\"MSDD_train_infer\" style=\"width: 800px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"MSDD models employ pairwise (two-speaker) unit-model for both training and inference. While training, pairwise model is trained on data samples with two speakers or two-speaker subset from data samples with more than two speakers. \n",
"In inference mode, we retrieve all possible pairs from the estimated number of speakers and average the results. For example, if there are four speakers `(A, B, C, D)`, we extract 6 pairs: `(A,B)`, `(A,C)`, `(A,D)`, `(B,C)`, `(B,D)`, `(C,D)`. Finally, the sigmoid outputs are averaged. In this way, MSDD can deal with flexible number of speakers using a pairwise model. \n",
"\n",
"The detailed information on MSDD model and model training can be found in tutorial on [Speaker Diarization Training](https://github.com/NVIDIA/NeMo/blob/main/tutorials/speaker_tasks/Speaker_Diarization_Training.ipynb). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### A toy example for speaker diarization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download a toy example audio file (`an4_diarize_test.wav`) and its ground-truth label file (`an4_diarize_test.rttm`)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import wget\n",
"ROOT = os.getcwd()\n",
"data_dir = os.path.join(ROOT,'data')\n",
"os.makedirs(data_dir, exist_ok=True)\n",
"an4_audio = os.path.join(data_dir,'an4_diarize_test.wav')\n",
"an4_rttm = os.path.join(data_dir,'an4_diarize_test.rttm')\n",
"if not os.path.exists(an4_audio):\n",
" an4_audio_url = \"https://nemo-public.s3.us-east-2.amazonaws.com/an4_diarize_test.wav\"\n",
" an4_audio = wget.download(an4_audio_url, data_dir)\n",
"if not os.path.exists(an4_rttm):\n",
" an4_rttm_url = \"https://nemo-public.s3.us-east-2.amazonaws.com/an4_diarize_test.rttm\"\n",
" an4_rttm = wget.download(an4_rttm_url, data_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's plot and listen to the audio and visualize the RTTM speaker labels."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import IPython\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import librosa\n",
"\n",
"sr = 16000\n",
"signal, sr = librosa.load(an4_audio,sr=sr) \n",
"\n",
"fig,ax = plt.subplots(1,1)\n",
"fig.set_figwidth(20)\n",
"fig.set_figheight(2)\n",
"plt.plot(np.arange(len(signal)),signal,'gray')\n",
"fig.suptitle('Reference merged an4 audio', fontsize=16)\n",
"plt.xlabel('time (secs)', fontsize=18)\n",
"ax.margins(x=0)\n",
"plt.ylabel('signal strength', fontsize=16);\n",
"a,_ = plt.xticks();plt.xticks(a,a/sr);\n",
"\n",
"IPython.display.Audio(an4_audio)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We would use [pyannote_metrics](https://pyannote.github.io/pyannote-metrics/) for visualization and score calculation purposes. Hence all the labels in rttm formats would eventually be converted to pyannote objects, we created two helper functions rttm_to_labels (for NeMo intermediate processing) and labels_to_pyannote_object for scoring and visualization format."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.asr.parts.utils.speaker_utils import rttm_to_labels, labels_to_pyannote_object"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's load ground truth RTTM labels and view the reference Annotation timestamps visually"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# view the sample rttm file\n",
"!cat {an4_rttm}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"labels = rttm_to_labels(an4_rttm)\n",
"reference = labels_to_pyannote_object(labels)\n",
"print(labels)\n",
"reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Speaker Diarization scripts commonly expects following arguments:\n",
"1. manifest_filepath : Path to manifest file containing json lines of format: \n",
"`{'audio_filepath': /path/to/audio_file, 'offset': 0, 'duration':None, 'label': 'infer', 'text': '-', 'num_speakers': None, 'rttm_filepath': /path/to/rttm/file, 'uem_filepath'='/path/to/uem/filepath'}`\n",
"2. out_dir : directory where outputs and intermediate files are stored. \n",
"3. oracle_vad: If this is true then we extract speech activity labels from rttm files, if False then either \n",
"4. vad.model_path or external_manifestpath containing speech activity labels has to be passed. \n",
"\n",
"Mandatory fields are audio_filepath, offset, duration, label and text. For the rest if you would like to evaluate with known number of speakers pass the value else None. If you would like to score the system with known rttms then that should be passed as well, else None. uem file is used to score only part of your audio for evaluation purposes, hence pass if you would like to evaluate on it else None.\n",
"\n",
"\n",
"* **\\[Note\\]** we expect audio and corresponding RTTM have **same base name** and the name should be **unique**. \n",
"\n",
"For eg: if audio file name is **test_an4**.wav, if provided we expect corresponding rttm file name to be **test_an4**.rttm (note the matching **test_an4** base name)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets create manifest with the an4 audio and rttm available. If you have more than one files you may also use the script `pathfiles_to_diarize_manifest.py` to generate manifest file from list of audio files and optionally rttm files "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a manifest for input with below format. \n",
"# {'audio_filepath': /path/to/audio_file, 'offset': 0, 'duration':None, 'label': 'infer', 'text': '-', \n",
"# 'num_speakers': None, 'rttm_filepath': /path/to/rttm/file, 'uem_filepath'='/path/to/uem/filepath'}\n",
"import json\n",
"meta = {\n",
" 'audio_filepath': an4_audio, \n",
" 'offset': 0, \n",
" 'duration':None, \n",
" 'label': 'infer', \n",
" 'text': '-', \n",
" 'num_speakers': 2, \n",
" 'rttm_filepath': an4_rttm, \n",
" 'uem_filepath' : None\n",
"}\n",
"with open('data/input_manifest.json','w') as fp:\n",
" json.dump(meta,fp)\n",
" fp.write('\\n')\n",
"\n",
"!cat data/input_manifest.json\n",
"\n",
"output_dir = os.path.join(ROOT, 'oracle_vad')\n",
"os.makedirs(output_dir,exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Speaker Diarization with Oracle-VAD"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using **oracle VAD** for speaker diarization can be regarded as performing a diarization inference based on ground-truth speech/non-speech labels. The motivation behind using oracle-VAD is to factor out the influence of VAD performane when we evaluate a speaker diarization system. Speaker diarization with oracle-VAD can also be used to run speaker diarization with rttms generated from any external VAD, not just VAD model from NeMo.\n",
"\n",
"The first step is to start converting reference audio RTTM file (containing VAD output) timestamps to oracle manifest file. This manifest file would be sent to our speaker diarizer to extract embeddings.\n",
"\n",
"If you have RTTM files for your input audio files, setting `oracle_vad=True` in diarization inference config, the diarization system automatically computes oracle manifest based on the rttms provided through input manifest file."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our config file is based on [hydra](https://hydra.cc/docs/intro/). \n",
"With hydra config, we ask users to provide values to variables that were filled with **???**, these are mandatory fields and scripts expect them for successful runs. Note that the variables filled with **null** are optional variables. Such variables could be provided if needed but are not mandatory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from omegaconf import OmegaConf\n",
"MODEL_CONFIG = os.path.join(data_dir,'diar_infer_telephonic.yaml')\n",
"if not os.path.exists(MODEL_CONFIG):\n",
" config_url = \"https://raw.githubusercontent.com/NVIDIA/NeMo/main/examples/speaker_tasks/diarization/conf/inference/diar_infer_telephonic.yaml\"\n",
" MODEL_CONFIG = wget.download(config_url,data_dir)\n",
"\n",
"config = OmegaConf.load(MODEL_CONFIG)\n",
"print(OmegaConf.to_yaml(config))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can perform speaker diarization based on timestamps generated from ground truth rttms rather than generating through VAD. \n",
"\n",
"Let's set parameters for speaker diarization inference. We will use `titanet_large` speaker embedding model for running clustering diarizer. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.diarizer.manifest_filepath = 'data/input_manifest.json'\n",
"config.diarizer.out_dir = output_dir # Directory to store intermediate files and prediction outputs\n",
"pretrained_speaker_model = 'titanet_large'\n",
"config.diarizer.speaker_embeddings.model_path = pretrained_speaker_model\n",
"config.diarizer.speaker_embeddings.parameters.window_length_in_sec = [1.5,1.25,1.0,0.75,0.5] \n",
"config.diarizer.speaker_embeddings.parameters.shift_length_in_sec = [0.75,0.625,0.5,0.375,0.1] \n",
"config.diarizer.speaker_embeddings.parameters.multiscale_weights= [1,1,1,1,1] \n",
"config.diarizer.oracle_vad = True # ----> ORACLE VAD \n",
"config.diarizer.clustering.parameters.oracle_num_speakers = False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Clustering Diarizer: with Oracle VAD"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we set configurations, import `ClusteringDiarizer` class and create a clustering diarizer instance."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.asr.models import ClusteringDiarizer\n",
"oracle_vad_clusdiar_model = ClusteringDiarizer(cfg=config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# And lets diarize\n",
"oracle_vad_clusdiar_model.diarize()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With DER 0 -> means it clustered speaker embeddings correctly. Let's view "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!cat {output_dir}/pred_rttms/an4_diarize_test.rttm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Visualize the diarization output of clustering diarizer and compare with the ground-truth speaker labels."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Clustering Diarizer Result (RTTM format)\")\n",
"pred_labels_neural = rttm_to_labels(f'{output_dir}/pred_rttms/an4_diarize_test.rttm')\n",
"hypothesis_neural = labels_to_pyannote_object(pred_labels_neural)\n",
"hypothesis_neural"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Ground-truth Speaker Labels\")\n",
"reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Neural Diarizer: Multiscale Diarization Decoder with Oracle VAD"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The checkpoints (`.ckpt`) or NeMo files (`.nemo`) for **neural diarizers** contain all the necessary neural models for speaker diarization. For example, an MSDD model checkpoint or a NeMo file has pre-trained [TitaNet](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/titanet_large) and MSDD model itself. \n",
"\n",
"In this tutorial, we use [diar_msdd_telephonic](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/diar_msdd_telephonic) which is optimized for telephic speech. Since we share the same YAML file for all kinds of speaker diarization inference, all we need to do is add model path on top of the config setting for clustering diarizer.\n",
"\n",
"`sigmoid_threshold` is a threshold for making the final binary decision on overlapping speaker label. The lower the value is, the more generous on the speech overlap detection. `sigmoid_threshold` value affects false alarm and miss errors. Default value is `0.7` for telephonic model and if `sigmoid_threshold=1.0`, no overlap speech is detected."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.diarizer.msdd_model.model_path = 'diar_msdd_telephonic' # Telephonic speaker diarization model \n",
"config.diarizer.msdd_model.parameters.sigmoid_threshold = [0.7, 1.0] # Evaluate with T=0.7 and T=1.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.asr.models.msdd_models import NeuralDiarizer\n",
"oracle_vad_msdd_model = NeuralDiarizer(cfg=config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Unlike clustering diarizer, neural diarizer evaluates diarization results in three different settings by default:\n",
"\n",
"* `collar=0.25`, `ignore_overlap=True`: This is the default setting for evaluating clustering diarizer.\n",
"* `collar=0.25`, `ignore_overlap=False`: Still 0.25 s around boundaries are not evaluated but overlaps are evaluated.\n",
"* `collar=0.0`, `ignore_overlap=False`: No collar at all and evaluate overlaps. \n",
"\n",
"Let's run the MSDD model with the prepared configurations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"oracle_vad_msdd_model.diarize()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The output of the neural diarizer is saved in `outputs/pred_rttms`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!cat {output_dir}/pred_rttms/an4_diarize_test.rttm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Visualize the diarization output of clustering diarizer and compare with the ground-truth speaker labels."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Neural Diarizer Result (RTTM format)\")\n",
"pred_labels_neural = rttm_to_labels(f'{output_dir}/pred_rttms/an4_diarize_test.rttm')\n",
"hypothesis_neural = labels_to_pyannote_object(pred_labels_neural)\n",
"hypothesis_neural"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Ground-truth Speaker Labels\")\n",
"reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Speaker Diarization with System VAD (NeMo VAD models)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this section, we actually compute VAD timestamps using a NeMo VAD model on the input manifest file. Next, we use these timestamps for speech/non-speech labels to extract speaker embedding vectors followed by clustering them into num of speakers. As opposed to oracle VAD, the result from an actual VAD model is referred to as __system VAD__."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Before we proceed let's look at the speaker diarization config, which we would be depending up on for vad computation\n",
"and speaker embedding extraction."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(OmegaConf.to_yaml(config))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As can be seen most of the variables in config are self explanatory \n",
"with VAD variables under vad section and speaker related variables under speaker embeddings section. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To perform VAD based diarization we can ignore `oracle_vad_manifest` in `speaker_embeddings` key for now and need to fill up the rest. We also needs to provide pretrained `model_path` of vad and speaker embeddings .nemo models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pretrained_vad = 'vad_multilingual_marblenet'\n",
"pretrained_speaker_model = 'titanet_large'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note in this tutorial, we use the VAD model *vad_multilingual_marblenet* which is an improved model based on MarbleNet-3x2 that has been introduced and published in [ICASSP MarbleNet](https://arxiv.org/pdf/2010.13886.pdf). You might need to tune on dev set similar to your dataset if you would like to improve the performance.\n",
"\n",
"And the speakerNet-M-Diarization model achieves 7.3% confusion error rate on CH109 set with oracle vad. This model is trained on voxceleb1, voxceleb2, Fisher, SwitchBoard datasets. So for more improved performance specific to your dataset, finetune speaker verification model with a devset similar to your test set.\n",
"\n",
"It is recommended to set `num_workers=1` since using the multiprocessing package in Jupyter Notebook environment might cause freezing issues. For sizable data, run speaker diarization using the scripts in `NeMo/examples/speaker_tasks/` setting `num_workers` larger than 1 in the configurations.\n",
"\n",
"You can play with parameters in configurations as below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.num_workers = 1 # Workaround for multiprocessing hanging with ipython issue \n",
"\n",
"output_dir = os.path.join(ROOT, 'outputs')\n",
"config.diarizer.manifest_filepath = 'data/input_manifest.json'\n",
"config.diarizer.out_dir = output_dir #Directory to store intermediate files and prediction outputs\n",
"\n",
"config.diarizer.speaker_embeddings.model_path = pretrained_speaker_model\n",
"config.diarizer.oracle_vad = False # compute VAD provided with model_path to vad config\n",
"config.diarizer.clustering.parameters.oracle_num_speakers=False\n",
"\n",
"# Here, we use our in-house pretrained NeMo VAD model\n",
"config.diarizer.vad.model_path = pretrained_vad\n",
"config.diarizer.vad.parameters.onset = 0.8\n",
"config.diarizer.vad.parameters.offset = 0.6\n",
"config.diarizer.vad.parameters.pad_offset = -0.05"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Clustering Diarizer: with System VAD"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we passed all the variables we need, let's initialize the clustering diarizer model with the configurations we set. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.asr.models import ClusteringDiarizer\n",
"sd_model = ClusteringDiarizer(cfg=config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And launch diarization with a single line of code."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sd_model.diarize()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As can be seen, we first performed VAD, then with the timestamps created in `{output_dir}/vad_outputs` by VAD we calculated speaker embeddings (`{output_dir}/speaker_outputs/embeddings/`) which are then clustered using spectral clustering. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generating predicted VAD timesteps: We perform VAD inference to have frame level prediction → (optional: use decision smoothing) → given `threshold`, write speech segments to a RTTM-like timestamp manifest file.\n",
"\n",
"We use VAD decision smoothing (50% overlap median) as described in [vad_utils.py](https://github.com/NVIDIA/NeMo/blob/stable/nemo/collections/asr/parts/utils/vad_utils.py).\n",
"\n",
"You can also tune the threshold on your dev set. Use this provided in [vad_tune_threshold.py](https://github.com/NVIDIA/NeMo/blob/stable/scripts/voice_activity_detection/vad_tune_threshold.py)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# VAD predicted time stamps\n",
"# you can also use single threshold(=onset=offset) for binarization and plot here\n",
"from nemo.collections.asr.parts.utils.vad_utils import plot\n",
"\n",
"if config.diarizer.vad.parameters.smoothing:\n",
" vad_output_filepath = f'{output_dir}/vad_outputs/overlap_smoothing_output_median_{config.diarizer.vad.parameters.overlap}/an4_diarize_test.{config.diarizer.vad.parameters.smoothing}'\n",
"else:\n",
" vad_output_filepath = f'{output_dir}/vad_outputs/an4_diarize_test.frame'\n",
"\n",
"plot(\n",
" an4_audio,\n",
" vad_output_filepath, \n",
" an4_rttm,\n",
" per_args = config.diarizer.vad.parameters, #threshold\n",
" ) \n",
"\n",
"print(f\"VAD params:{OmegaConf.to_yaml(config.diarizer.vad.parameters)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Predicted outputs are written to `{output_dir}/pred_rttms` and see how we predicted along with VAD prediction"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!cat {output_dir}/pred_rttms/an4_diarize_test.rttm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Visualize the diarization output of clustering diarizer and compare with the ground-truth speaker labels."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Clustering Diarizer Result (RTTM format)\")\n",
"pred_labels_neural = rttm_to_labels(f'{output_dir}/pred_rttms/an4_diarize_test.rttm')\n",
"hypothesis_neural = labels_to_pyannote_object(pred_labels_neural)\n",
"hypothesis_neural\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Ground-truth Speaker Labels (RTTM format)\")\n",
"reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Neural Diarizer: Multiscale Diarization Decoder with System VAD"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can run a neural diarizer model without changing many parameters since neural diarizer also performs VAD and clustering diarizer. All we need to do is run the MSDD model with the new config file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.diarizer.msdd_model.model_path = 'diar_msdd_telephonic' # Telephonic speaker diarization model \n",
"config.diarizer.msdd_model.parameters.sigmoid_threshold = [0.7, 1.0] # Evaluate with T=0.7 and T=1.0\n",
"system_vad_msdd_model = NeuralDiarizer(cfg=config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"system_vad_msdd_model.diarize()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check whether diarization saved in `outputs/pred_rttms` is correct."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!cat {output_dir}/pred_rttms/an4_diarize_test.rttm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Visualize the diarization output of clustering diarizer and compare with the ground-truth speaker labels."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Neural Diarizer Result (RTTM format)\")\n",
"pred_labels_neural = rttm_to_labels(f'{output_dir}/pred_rttms/an4_diarize_test.rttm')\n",
"hypothesis_neural = labels_to_pyannote_object(pred_labels_neural)\n",
"hypothesis_neural"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Ground-truth Speaker Labels (RTTM format)\")\n",
"reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Storing and Restoring models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For clustering diarizer, we can save the whole config and model parameters in a single .nemo and restore from it anytime. Neural diarizer will support this feature soon."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"oracle_vad_clusdiar_model.save_to(os.path.join(output_dir,'clustering_diarizer.nemo'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Restore from saved model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"del oracle_vad_clusdiar_model\n",
"import nemo.collections.asr as nemo_asr\n",
"restored_model = nemo_asr.models.ClusteringDiarizer.restore_from(os.path.join(output_dir,'clustering_diarizer.nemo'))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
},
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|