File size: 38,289 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "o_0K1lsW1dj9"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell\n",
"\n",
"# install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[nlp]\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "95FHWXOVpUFp",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# If you're not using Colab, you might need to upgrade jupyter notebook to avoid the following error:\n",
"# 'ImportError: IProgress not found. Please update jupyter and ipywidgets.'\n",
"! pip install ipywidgets\n",
"! jupyter nbextension enable --py widgetsnbextension\n",
"\n",
"# Please restart the kernel after running this cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "dzqD2WDFOIN-"
},
"outputs": [],
"source": [
"from nemo.collections import nlp as nemo_nlp\n",
"from nemo.utils.exp_manager import exp_manager\n",
"\n",
"import os\n",
"import wget \n",
"import torch\n",
"import pytorch_lightning as pl\n",
"from omegaconf import OmegaConf"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "daYw_Xll2ZR9"
},
"source": [
"# Task Description\n",
"**Sentiment Analysis** is the task of detecting the sentiment in text. We model this problem as a simple form of a text classification problem. For example `Gollum's performance is incredible!` has a positive sentiment while `It's neither as romantic nor as thrilling as it should be.` has a negative sentiment.\n",
"."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZnuziSwJ1yEB"
},
"source": [
"# Dataset\n",
"\n",
"In this tutorial we going to use [The Stanford Sentiment Treebank (SST-2)](https://nlp.stanford.edu/sentiment/index.html) corpus for sentiment analysis. This version of the dataset contains a collection of sentences with binary labels of positive and negative. It is a standard benchmark for sentence classification and is part of the GLUE Benchmark: https://gluebenchmark.com/tasks. Please download and unzip the SST-2 dataset from GLUE. It should contain three files of train.tsv, dev.tsv, and test.tsv which can be used for training, validation, and test respectively.\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qzcZ3nb_-SVT"
},
"source": [
"# NeMo Text Classification Data Format\n",
"\n",
"[TextClassificationModel](https://github.com/NVIDIA/NeMo/blob/stable/nemo/collections/nlp/models/text_classification/text_classification_model.py) in NeMo supports text classification problems such as sentiment analysis or domain/intent detection for dialogue systems, as long as the data follows the format specified below. \n",
"\n",
"TextClassificationModel requires the data to be stored in TAB separated files (.tsv) with two columns of sentence and label. Each line of the data file contains text sequences, where words are separated with spaces and label separated with [TAB], i.e.: \n",
"\n",
"```\n",
"[WORD][SPACE][WORD][SPACE][WORD][TAB][LABEL]\n",
"```\n",
"\n",
"For example:\n",
"```\n",
"hide new secretions from the parental units[TAB]0\n",
"\n",
"that loves its characters and communicates something rather beautiful about human nature[TAB]1\n",
"...\n",
"```\n",
"\n",
"\n",
"If your dataset is stored in another format, you need to convert it to this format to use the TextClassificationModel. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SL58EWkd2ZVb"
},
"source": [
"## Download and Preprocess the Data\n",
"\n",
"First, you need to download the zipped file of the SST-2 dataset from the GLUE Benchmark website: https://gluebenchmark.com/tasks, and put it in the current folder. Then the following script would extract it into the data path specified by `DATA_DIR`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "n8HZrDmr12_-"
},
"outputs": [],
"source": [
"DATA_DIR = \"DATA_DIR\"\n",
"WORK_DIR = \"WORK_DIR\"\n",
"os.environ['DATA_DIR'] = DATA_DIR\n",
"\n",
"os.makedirs(WORK_DIR, exist_ok=True)\n",
"os.makedirs(DATA_DIR, exist_ok=True)\n",
"\n",
"! wget https://dl.fbaipublicfiles.com/glue/data/SST-2.zip\n",
"! unzip -o SST-2.zip -d {DATA_DIR}"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "U8Ty5_S7Ye8h"
},
"source": [
"Now, the data folder should contain the following files:"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "L8vsyh3JZH26"
},
"source": [
"\n",
"\n",
"* train.tsv\n",
"* dev.tsv\n",
"* test.tsv\n",
"\n",
"\n",
"The format of `train.tsv` and `dev.tsv` is close to NeMo's format except to have an extra header line at the beginning of the files. We would remove these extra lines. But `test.tsv` has different format and labels are missing for this part of the data.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qB0oLE4R9EhJ"
},
"outputs": [],
"source": [
"! sed 1d {DATA_DIR}/SST-2/train.tsv > {DATA_DIR}/SST-2/train_nemo_format.tsv\n",
"! sed 1d {DATA_DIR}/SST-2/dev.tsv > {DATA_DIR}/SST-2/dev_nemo_format.tsv\n",
"! ls -l {DATA_DIR}/SST-2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6UDPgadLN6SG"
},
"outputs": [],
"source": [
"# let's take a look at the data \n",
"print('Contents (first 5 lines) of train.tsv:')\n",
"! head -n 5 {DATA_DIR}/SST-2/train_nemo_format.tsv\n",
"\n",
"print('\\nContents (first 5 lines) of test.tsv:')\n",
"! head -n 5 {DATA_DIR}/SST-2/test.tsv"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "daludzzL2Jba"
},
"source": [
"# Model Configuration"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_whKCxfTMo6Y"
},
"source": [
"Now, let's take a closer look at the model's configuration and learn to train the model from scratch and finetune the pretrained model.\n",
"\n",
"Our text classification model uses a pretrained [BERT](https://arxiv.org/pdf/1810.04805.pdf) model (or other BERT-like models) followed by a classification layer on the output of the first token ([CLS]).\n",
"\n",
"The model is defined in a config file which declares multiple important sections. The most important ones are:\n",
"- **model**: All arguments that are related to the Model - language model, tokenizer, head classifier, optimizer, schedulers, and datasets/data loaders.\n",
"\n",
"- **trainer**: Any argument to be passed to PyTorch Lightning including number of epochs, number of GPUs, precision level, etc.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "T1gA8PsJ13MJ"
},
"outputs": [],
"source": [
"# download the model's configuration file \n",
"MODEL_CONFIG = \"text_classification_config.yaml\"\n",
"CONFIG_DIR = WORK_DIR + '/configs/'\n",
"\n",
"os.makedirs(CONFIG_DIR, exist_ok=True)\n",
"if not os.path.exists(CONFIG_DIR + MODEL_CONFIG):\n",
" print('Downloading config file...')\n",
" wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/text_classification/conf/' + MODEL_CONFIG, CONFIG_DIR)\n",
" print('Config file downloaded!')\n",
"else:\n",
" print ('config file already exists')\n",
"config_path = f'{WORK_DIR}/configs/{MODEL_CONFIG}'\n",
"print(config_path)\n",
"config = OmegaConf.load(config_path)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mX3KmWMvSUQw"
},
"source": [
"## this line will print the entire config of the model\n",
"print(OmegaConf.to_yaml(config))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZCgWzNBkaQLZ"
},
"source": [
"# Model Training From Scratch\n",
"## Setting up data within the config\n",
"\n",
"We first need to set the num_classes in the config file which specifies the number of classes in the dataset. For SST-2, we have just two classes (0-positive and 1-negative). So we set the num_classes to 2. The model supports more than 2 classes too.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jFSMiWtlkaC5"
},
"outputs": [],
"source": [
"config.model.dataset.num_classes=2"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xCkc7QGikqPh"
},
"source": [
"\n",
"Among other things, the config file contains dictionaries called dataset, train_ds and validation_ds. These are configurations used to setup the Dataset and DataLoaders of the corresponding config.\n",
"\n",
"Notice that some config lines, including `model.dataset.classes_num`, have `???` as their value, this means that values for these fields are required to be to be specified by the user. We need to specify and set the `model.train_ds.file_name`, `model.validation_ds.file_name`, and `model.test_ds.file_name` in the config file to the paths of the train, validation, and test files if they exist. We may do it by updating the config file or by setting them from the command line. \n",
"\n",
"Let's now set the train and validation paths in the config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LQHCJN-ZaoLp"
},
"outputs": [],
"source": [
"config.model.train_ds.file_path = os.path.join(DATA_DIR, 'SST-2/train_nemo_format.tsv')\n",
"config.model.validation_ds.file_path = os.path.join(DATA_DIR, 'SST-2/dev_nemo_format.tsv')\n",
"# Name of the .nemo file where trained model will be saved.\n",
"config.save_to = 'trained-model.nemo'\n",
"config.export_to = 'trained-model.onnx'\n",
"\n",
"print(\"Train dataloader's config: \\n\")\n",
"# OmegaConf.to_yaml() is used to create a proper format for printing the train dataloader's config\n",
"# You may change other params like batch size or the number of samples to be considered (-1 means all the samples)\n",
"print(OmegaConf.to_yaml(config.model.train_ds))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nB96-3sTc3yk"
},
"source": [
"## Building the PyTorch Lightning Trainer\n",
"\n",
"NeMo models are primarily PyTorch Lightning (PT) modules - and therefore are entirely compatible with the PyTorch Lightning ecosystem.\n",
"\n",
"Let's first instantiate a PT Trainer object by using the trainer section of the config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "1tG4FzZ4Ui60"
},
"outputs": [],
"source": [
"print(\"Trainer config - \\n\")\n",
"# OmegaConf.to_yaml() is used to create a proper format for printing the trainer config\n",
"print(OmegaConf.to_yaml(config.trainer))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XMVVs0INi5zj"
},
"source": [
"First you need to create a PT trainer with the params stored in the trainer's config. You may set the number of steps for training with max_steps or number of epochs with max_epochs in the trainer's config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "knF6QeQQdMrH"
},
"outputs": [],
"source": [
"# lets modify some trainer configs\n",
"# checks if we have GPU available and uses it\n",
"config.trainer.accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
"config.trainer.devices = 1\n",
"\n",
"\n",
"# for mixed precision training, uncomment the lines below (precision should be set to 16 and amp_level to O1):\n",
"# config.trainer.precision = 16\n",
"# config.trainer.amp_level = O1\n",
"\n",
"# disable distributed training when using Colab to prevent the errors\n",
"config.trainer.strategy = None\n",
"\n",
"# setup max number of steps to reduce training time for demonstration purposes of this tutorial\n",
"# Training stops when max_step or max_epochs is reached (earliest)\n",
"config.trainer.max_epochs = 1\n",
"\n",
"# instantiates a PT Trainer object by using the trainer section of the config\n",
"trainer = pl.Trainer(**config.trainer)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8IlEMdVxdr6p"
},
"source": [
"## Setting up the NeMo Experiment¶\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6Kl5IdnV3O8y"
},
"source": [
"NeMo has an experiment manager that handles the logging and saving checkpoints for us, so let's setup it. We need the PT trainer and the exp_manager config:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "8uztqGAmdrYt"
},
"outputs": [],
"source": [
"# The experiment manager of a trainer object can not be set twice. We repeat the trainer creation code again here to prevent getting error when this cell is executed more than once. \n",
"trainer = pl.Trainer(**config.trainer)\n",
"\n",
"# exp_dir specifies the path to store the the checkpoints and also the logs, it's default is \"./nemo_experiments\"\n",
"# You may set it by uncommentig the following line\n",
"# config.exp_manager.exp_dir = 'LOG_CHECKPOINT_DIR'\n",
"\n",
"# OmegaConf.to_yaml() is used to create a proper format for printing the trainer config\n",
"print(OmegaConf.to_yaml(config.exp_manager))\n",
"\n",
"exp_dir = exp_manager(trainer, config.exp_manager)\n",
"\n",
"# the exp_dir provides a path to the current experiment for easy access\n",
"print(exp_dir)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8tjLhUvL_o7_"
},
"source": [
"Before initializing the model, we might want to modify some of the model configs. For example, we might want to modify the pretrained BERT model to another model. The default model is `bert-base-uncased`. We support a variety of models including all the models available in HuggingFace, and Megatron."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Xeuc2i7Y_nP5"
},
"outputs": [],
"source": [
"# complete list of supported BERT-like models\n",
"print(nemo_nlp.modules.get_pretrained_lm_models_list())\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RK2xglXyAUOO"
},
"outputs": [],
"source": [
"# specify the BERT-like model, you want to use\n",
"# set the `model.language_modelpretrained_model_name' parameter in the config to the model you want to use\n",
"config.model.language_model.pretrained_model_name = \"bert-base-uncased\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fzNZNAVRjDD-"
},
"source": [
"Now, we are ready to initialize our model. During the model initialization call, the dataset and data loaders will also be prepared for the training and validation.\n",
"\n",
"Also, the pretrained BERT model will be automatically downloaded. Note it can take up to a few minutes depending on the size of the chosen BERT model for the first time you create the model. If your dataset is large, it also may take some time to read and process all the datasets. \n",
"\n",
"Now we can create the model with the model config and the trainer object like this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "NgsGLydWo-6-",
"scrolled": true
},
"outputs": [],
"source": [
"model = nemo_nlp.models.TextClassificationModel(cfg=config.model, trainer=trainer)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kQ592Tx4pzyB"
},
"source": [
"## Monitoring Training Progress\n",
"Optionally, you can create a Tensorboard visualization to monitor training progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "mTJr16_pp0aS"
},
"outputs": [],
"source": [
"try:\n",
" from google import colab\n",
" COLAB_ENV = True\n",
"except (ImportError, ModuleNotFoundError):\n",
" COLAB_ENV = False\n",
"\n",
"# Load the TensorBoard notebook extension\n",
"if COLAB_ENV:\n",
" %load_ext tensorboard\n",
" %tensorboard --logdir {exp_dir}\n",
"else:\n",
" print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MW_JVIi5z68e"
},
"source": [
"## Training\n",
"\n",
"You may start the training by using the trainer.fit() method. The number of steps/epochs of the training are specified already in the config of the trainer and you may update them before creating the trainer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "hUvnSpyjp0Dh",
"scrolled": true
},
"outputs": [],
"source": [
"# start model training\n",
"trainer.fit(model)\n",
"model.save_to(config.save_to)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VPdzJVAgSFaJ"
},
"source": [
"# Evaluation\n",
"\n",
"To see how the model performs, we can run evaluate and test the performance of the trained model on a data file. Here we would load the best checkpoint (the one with the lowest validation loss) and create a model (eval_model) from the checkpoint. We would also create a new trainer (eval_trainer) to show how it is done when training is done and you have just the checkpoints. If you want to perform the evaluation in the same script as the training's script, you may still use the same model and trainer you used for training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "92PB0iTqNnW-"
},
"outputs": [],
"source": [
"# extract the path of the best checkpoint from the training, you may update it to any checkpoint\n",
"checkpoint_path = trainer.checkpoint_callback.best_model_path\n",
"# Create an evaluation model and load the checkpoint\n",
"eval_model = nemo_nlp.models.TextClassificationModel.load_from_checkpoint(checkpoint_path=checkpoint_path)\n",
"\n",
"# create a dataloader config for evaluation, the same data file provided in validation_ds is used here\n",
"# file_path can get updated with any file\n",
"eval_config = OmegaConf.create({'file_path': config.model.validation_ds.file_path, 'batch_size': 64, 'shuffle': False, 'num_samples': -1})\n",
"eval_model.setup_test_data(test_data_config=eval_config)\n",
"#eval_dataloader = eval_model._create_dataloader_from_config(cfg=eval_config, mode='test')\n",
"\n",
"# a new trainer is created to show how to evaluate a checkpoint from an already trained model\n",
"# create a copy of the trainer config and update it to be used for final evaluation\n",
"eval_trainer_cfg = config.trainer.copy()\n",
"eval_trainer_cfg.accelerator = 'gpu' if torch.cuda.is_available() else 'cpu' # it is safer to perform evaluation on single GPU as PT is buggy with the last batch on multi-GPUs\n",
"eval_trainer_cfg.strategy = None # 'ddp' is buggy with test process in the current PT, it looks like it has been fixed in the latest master\n",
"eval_trainer = pl.Trainer(**eval_trainer_cfg)\n",
"\n",
"eval_trainer.test(model=eval_model, verbose=False) # test_dataloaders=eval_dataloader,\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Tit5kG4Z5SXu"
},
"source": [
"# Inference\n",
"\n",
"You may create a model from a saved checkpoint and use the model.infer() method to perform inference on a list of queries. There is no need of any trainer for inference."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BKe5Jn4u9xng"
},
"outputs": [],
"source": [
"# extract the path of the best checkpoint from the training, you may update it to any other checkpoint file\n",
"checkpoint_path = trainer.checkpoint_callback.best_model_path\n",
"# Create an evaluation model and load the checkpoint\n",
"infer_model = nemo_nlp.models.TextClassificationModel.load_from_checkpoint(checkpoint_path=checkpoint_path)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "y8SFxPJd-hkH"
},
"source": [
"To see how the model performs, let’s get model's predictions for a few examples:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "DQhsamclRtxJ"
},
"outputs": [],
"source": [
"# move the model to the desired device for inference\n",
"# we move the model to \"cuda\" if available otherwise \"cpu\" would be used\n",
"if torch.cuda.is_available():\n",
" infer_model.to(\"cuda\")\n",
"else:\n",
" infer_model.to(\"cpu\")\n",
"\n",
"# define the list of queries for inference\n",
"queries = ['by the end of no such thing the audience , like beatrice , has a watchful affection for the monster .', \n",
" 'director rob marshall went out gunning to make a great one .', \n",
" 'uneasy mishmash of styles and genres .']\n",
" \n",
"# max_seq_length=512 is the maximum length BERT supports. \n",
"results = infer_model.classifytext(queries=queries, batch_size=3, max_seq_length=512)\n",
"\n",
"print('The prediction results of some sample queries with the trained model:')\n",
"for query, result in zip(queries, results):\n",
" print(f'Query : {query}')\n",
" print(f'Predicted label: {result}')\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ref1qSonGNhP"
},
"source": [
"## Training Script\n",
"\n",
"If you have NeMo installed locally (eg. cloned from the Github), you can also train the model with `examples/nlp/text_classification/text_classifciation_with_bert.py`. This script contains an example on how to train, evaluate and perform inference with the TextClassificationModel.\n",
"\n",
"For example the following would train a model for 50 epochs in 2 GPUs on a classification task with 2 classes:\n",
"\n",
"```\n",
"# python text_classification_with_bert.py \n",
" model.dataset.num_classes=2\n",
" model.train_ds=PATH_TO_TRAIN_FILE \n",
" model.validation_ds=PATH_TO_VAL_FILE \n",
" trainer.max_epochs=50\n",
" trainer.devices=2\n",
" trainer.accelerator='gpu'\n",
"```\n",
"\n",
"This script would also reload the best checkpoint after the training is done and does evaluation on the dev set. Then perform inference on some sample queries. \n",
"\n",
"\n",
"By default, this script uses `examples/nlp/text_classification/conf/text_classifciation_config.py` config file, and you may update all the params in the config file from the command line. You may also use another config file like this:\n",
"\n",
"```\n",
"# python text_classification_with_bert.py --config-name==PATH_TO_CONFIG_FILE\n",
" model.dataset.num_classes=2\n",
" model.train_ds=PATH_TO_TRAIN_FILE \n",
" model.validation_ds=PATH_TO_VAL_FILE \n",
" trainer.max_epochs=50\n",
" trainer.devices=2\n",
" trainer.accelerator='gpu'\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deployment\n",
"\n",
"You can also deploy a model to an inference engine (like TensorRT or ONNXRuntime) using ONNX exporter.\n",
"If you don't have one, let's install it:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install --upgrade onnxruntime # for gpu, use onnxruntime-gpu\n",
"# !mkdir -p ort\n",
"# %cd ort\n",
"# !git clean -xfd\n",
"# !git clone --depth 1 --branch v1.8.0 https://github.com/microsoft/onnxruntime.git .\n",
"# !./build.sh --skip_tests --config Release --build_shared_lib --parallel --use_cuda --cuda_home /usr/local/cuda --cudnn_home /usr/lib/x86_64-linux-gnu --build_wheel\n",
"# !pip uninstall -y onnxruntime\n",
"# !pip uninstall -y onnxruntime-gpu\n",
"# !pip install --upgrade --force-reinstall ./build/Linux/Release/dist/onnxruntime*.whl\n",
"# %cd .."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then export"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.export(config.export_to)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And run some queries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import torch\n",
"from nemo.utils import logging\n",
"from nemo.collections.nlp.parts.utils_funcs import tensor2list\n",
"from nemo.collections.nlp.models.text_classification import TextClassificationModel\n",
"from nemo.collections.nlp.data.text_classification import TextClassificationDataset\n",
"\n",
"import onnxruntime\n",
"\n",
"def to_numpy(tensor):\n",
" return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()\n",
"\n",
"def postprocessing(results, labels):\n",
" return [labels[str(r)] for r in results]\n",
"\n",
"def create_infer_dataloader(model, queries):\n",
" batch_size = len(queries)\n",
" dataset = TextClassificationDataset(tokenizer=model.tokenizer, queries=queries, max_seq_length=512)\n",
" return torch.utils.data.DataLoader(\n",
" dataset=dataset,\n",
" batch_size=batch_size,\n",
" shuffle=False,\n",
" num_workers=2,\n",
" pin_memory=True,\n",
" drop_last=False,\n",
" collate_fn=dataset.collate_fn,\n",
" )\n",
"\n",
"\n",
"queries = [\"by the end of no such thing the audience , like beatrice , has a watchful affection for the monster .\",\n",
"\"director rob marshall went out gunning to make a great one .\",\n",
"\"uneasy mishmash of styles and genres .\",\n",
"\"I love exotic science fiction / fantasy movies but this one was very unpleasant to watch . Suggestions and images of child abuse , mutilated bodies (live or dead) , other gruesome scenes , plot holes , boring acting made this a regretable experience , The basic idea of entering another person's mind is not even new to the movies or TV (An Outer Limits episode was better at exploring this idea) . i gave it 4 / 10 since some special effects were nice .\"]\n",
"\n",
"model.eval()\n",
"infer_datalayer = create_infer_dataloader(model, queries)\n",
"\n",
"ort_session = onnxruntime.InferenceSession(config.export_to)\n",
"\n",
"for batch in infer_datalayer:\n",
" input_ids, input_type_ids, input_mask, subtokens_mask = batch\n",
" ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(input_ids),\n",
" ort_session.get_inputs()[1].name: to_numpy(input_mask),\n",
" ort_session.get_inputs()[2].name: to_numpy(input_type_ids),}\n",
" ologits = ort_session.run(None, ort_inputs)\n",
" alogits = np.asarray(ologits)\n",
" logits = torch.from_numpy(alogits[0])\n",
" preds = tensor2list(torch.argmax(logits, dim = -1))\n",
" processed_results = postprocessing(preds, {\"0\": \"negative\", \"1\": \"positive\"})\n",
"\n",
" logging.info('The prediction results of some sample queries with the trained model:')\n",
" for query, result in zip(queries, processed_results):\n",
" logging.info(f'Query : {query}')\n",
" logging.info(f'Predicted label: {result}')\n",
" break"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Text_Classification_Sentiment_Analysis.ipynb",
"private_outputs": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 4
} |