File size: 26,820 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
{
    "cells": [
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "BRANCH = 'r1.17.0'"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "o_0K1lsW1dj9"
            },
            "outputs": [],
            "source": [
                "\"\"\"\n",
                "You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
                "\n",
                "Instructions for setting up Colab are as follows:\n",
                "1. Open a new Python 3 notebook.\n",
                "2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
                "3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
                "4. Run this cell to set up dependencies.\n",
                "\"\"\"\n",
                "# If you're using Google Colab and not running locally, run this cell\n",
                "\n",
                "# install NeMo\n",
                "\n",
                "!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[nlp]"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "pycharm": {
                    "name": "#%%\n"
                },
                "scrolled": true
            },
            "outputs": [],
            "source": [
                "# If you're not using Colab, you might need to upgrade jupyter notebook to avoid the following error:\n",
                "# 'ImportError: IProgress not found. Please update jupyter and ipywidgets.'\n",
                "\n",
                "! pip install ipywidgets\n",
                "! jupyter nbextension enable --py widgetsnbextension\n",
                "\n",
                "# Please restart the kernel after running this cell"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "dzqD2WDFOIN-"
            },
            "outputs": [],
            "source": [
                "from nemo.collections import nlp as nemo_nlp\n",
                "from nemo.utils.exp_manager import exp_manager\n",
                "\n",
                "import os\n",
                "import wget\n",
                "import torch\n",
                "import pytorch_lightning as pl\n",
                "from omegaconf import OmegaConf"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "daYw_Xll2ZR9"
            },
            "source": [
                "In this tutorial, we are going to describe how to finetune BioMegatron - a [BERT](https://arxiv.org/abs/1810.04805)-like [Megatron-LM](https://arxiv.org/pdf/1909.08053.pdf) model pre-trained on large biomedical text corpus ([PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts and full-text commercial use collection) - on [RE: Text mining chemical-protein interactions (CHEMPROT)](https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/).\n",
                "\n",
                "The model size of Megatron-LM can be larger than BERT, up to multi-billion parameters, compared to 345 million parameters of BERT-large.\n",
                "There are some alternatives of BioMegatron, most notably [BioBERT](https://arxiv.org/abs/1901.08746). Compared to BioBERT BioMegatron is larger by model size and pre-trained on larger text corpus.\n",
                "\n",
                "A more general tutorial of using BERT-based models, including Megatron-LM, for downstream natural language processing tasks can be found [here](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/nlp/01_Pretrained_Language_Models_for_Downstream_Tasks.ipynb)."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "# Task Description\n",
                "**Relation Extraction (RE)** can be regarded as a type of sentence classification.\n",
                "\n",
                "The task is to classify the relation of a [GENE] and [CHEMICAL] in a sentence, for example like the following:\n",
                "```html\n",
                "14967461.T1.T22\t<@CHEMICAL$> inhibitors currently under investigation include the small molecules <@GENE$> (Iressa, ZD1839) and erlotinib (Tarceva, OSI-774), as well as monoclonal antibodies such as cetuximab (IMC-225, Erbitux).\t<CPR:4>\n",
                "14967461.T2.T22\t<@CHEMICAL$> inhibitors currently under investigation include the small molecules gefitinib (<@GENE$>, ZD1839) and erlotinib (Tarceva, OSI-774), as well as monoclonal antibodies such as cetuximab (IMC-225, Erbitux).\t<CPR:4>\n",
                "```\n",
                "to one of the following class:\n",
                "\n",
                "| Relation Class      | Relations |\n",
                "| ----------- | ----------- |\n",
                "| CPR:3      |  Upregulator and activator       |\n",
                "| CPR:4   | Downregulator and inhibitor         |\n",
                "| CPR:5 | Agonist |\n",
                "| CPR:6 | Antagonist |\n",
                "| CPR:9 | Substrate and product of |"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "ZnuziSwJ1yEB"
            },
            "source": [
                "# Datasets\n",
                "\n",
                "Details of ChemProt Relation Extraction task and the original data can be found on the [BioCreative VI website](https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/)\n",
                "\n",
                "ChemProt dataset pre-processed for easier consumption can be downloaded from [here](https://github.com/arwhirang/recursive_chemprot/blob/master/Demo/tree_LSTM/data/chemprot-data_treeLSTM.zip) or [here](https://github.com/ncbi-nlp/BLUE_Benchmark/releases/download/0.1/bert_data.zip)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "--wJ2891aIIE"
            },
            "outputs": [],
            "source": [
                "TASK = 'ChemProt'\n",
                "DATA_DIR = os.path.join(os.getcwd(), 'DATA_DIR')\n",
                "RE_DATA_DIR = os.path.join(DATA_DIR, 'RE')\n",
                "WORK_DIR = os.path.join(os.getcwd(), 'WORK_DIR')\n",
                "MODEL_CONFIG = 'text_classification_config.yaml'"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "os.makedirs(DATA_DIR, exist_ok=True)\n",
                "os.makedirs(os.path.join(DATA_DIR, 'RE'), exist_ok=True)\n",
                "os.makedirs(WORK_DIR, exist_ok=True)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "# download the dataset\n",
                "wget.download('https://github.com/arwhirang/recursive_chemprot/blob/master/Demo/tree_LSTM/data/chemprot-data_treeLSTM.zip?raw=true',\n",
                "              os.path.join(DATA_DIR, 'data_re.zip'))"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "!unzip -o {DATA_DIR}/data_re.zip -d {RE_DATA_DIR}"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "qB0oLE4R9EhJ"
            },
            "outputs": [],
            "source": [
                "! ls -l $RE_DATA_DIR"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Pre-process dataset\n",
                "Let's convert the dataset into the format that is compatible for [NeMo text-classification module](https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/text_classification/text_classification_with_bert.py)."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/text_classification/data/import_datasets.py')"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "! python import_datasets.py --dataset_name=chemprot --source_data_dir={RE_DATA_DIR} --target_data_dir={RE_DATA_DIR}"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "# let's take a look at the training data \n",
                "! head -n 5 {RE_DATA_DIR}/train.tsv"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "# let's check the label mapping\n",
                "! cat {RE_DATA_DIR}/label_mapping.tsv"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "It is not necessary to have the mapping exactly like this - it can be different.\n",
                "We use the same [mapping used by BioBERT](https://github.com/dmis-lab/biobert/blob/master/run_re.py#L438) so that comparison can be more straightforward."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "_whKCxfTMo6Y"
            },
            "source": [
                "# Model configuration\n",
                "\n",
                "Now, let's take a closer look at the model's configuration and learn to train the model.\n",
                "\n",
                "The model is defined in a config file which declares multiple important sections. They are:\n",
                "- **model**: All arguments that are related to the Model - language model, a classifier, optimizer and schedulers, datasets and any other related information\n",
                "\n",
                "- **trainer**: Any argument to be passed to PyTorch Lightning"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "T1gA8PsJ13MJ"
            },
            "outputs": [],
            "source": [
                "# download the model's configuration file \n",
                "MODEL_CONFIG = 'text_classification_config.yaml'\n",
                "config_dir = WORK_DIR + '/configs/'\n",
                "os.makedirs(config_dir, exist_ok=True)\n",
                "if not os.path.exists(config_dir + MODEL_CONFIG):\n",
                "    print('Downloading config file...')\n",
                "    wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/text_classification/conf/' + MODEL_CONFIG, config_dir)\n",
                "else:\n",
                "    print ('config file is already exists')"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "mX3KmWMvSUQw"
            },
            "outputs": [],
            "source": [
                "# this line will print the entire config of the model\n",
                "config_path = f'{WORK_DIR}/configs/{MODEL_CONFIG}'\n",
                "print(config_path)\n",
                "config = OmegaConf.load(config_path)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "config.model.train_ds.file_path = os.path.join(RE_DATA_DIR, 'train.tsv')\n",
                "config.model.validation_ds.file_path = os.path.join(RE_DATA_DIR, 'dev.tsv')\n",
                "config.model.task_name = 'chemprot'\n",
                "# Note: these are small batch-sizes - increase as appropriate to available GPU capacity\n",
                "config.model.train_ds.batch_size=8\n",
                "config.model.validation_ds.batch_size=8\n",
                "config.model.dataset.num_classes=6"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "print(OmegaConf.to_yaml(config))"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "ZCgWzNBkaQLZ"
            },
            "source": [
                "# Model Training\n",
                "## Setting up Data within the config\n",
                "\n",
                "Among other things, the config file contains dictionaries called **dataset**, **train_ds** and **validation_ds**. These are configurations used to setup the Dataset and DataLoaders of the corresponding config.\n",
                "\n",
                "We assume that both training and evaluation files are located in the same directory, and use the default names mentioned during the data download step. \n",
                "So, to start model training, we simply need to specify `model.dataset.data_dir`, like we are going to do below.\n",
                "\n",
                "Also notice that some config lines, including `model.dataset.data_dir`, have `???` in place of paths, this means that values for these fields are required to be specified by the user.\n",
                "\n",
                "Let's now add the data directory path, task name and output directory for saving predictions to the config."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "LQHCJN-ZaoLp"
            },
            "outputs": [],
            "source": [
                "config.model.task_name = TASK\n",
                "config.model.output_dir = WORK_DIR\n",
                "config.model.dataset.data_dir = RE_DATA_DIR"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "nB96-3sTc3yk"
            },
            "source": [
                "## Building the PyTorch Lightning Trainer\n",
                "\n",
                "NeMo models are primarily PyTorch Lightning modules - and therefore are entirely compatible with the PyTorch Lightning ecosystem.\n",
                "\n",
                "Let's first instantiate a Trainer object"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "1tG4FzZ4Ui60"
            },
            "outputs": [],
            "source": [
                "print(\"Trainer config - \\n\")\n",
                "print(OmegaConf.to_yaml(config.trainer))"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "knF6QeQQdMrH"
            },
            "outputs": [],
            "source": [
                "# lets modify some trainer configs\n",
                "# checks if we have GPU available and uses it\n",
                "accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
                "config.trainer.devices = 1\n",
                "config.trainer.accelerator = accelerator\n",
                "\n",
                "# for PyTorch Native AMP set precision=16\n",
                "config.trainer.precision = 16 if torch.cuda.is_available() else 32\n",
                "\n",
                "# remove distributed training flags\n",
                "config.trainer.strategy = None\n",
                "\n",
                "trainer = pl.Trainer(**config.trainer)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "8IlEMdVxdr6p"
            },
            "source": [
                "## Setting up a NeMo Experiment\n",
                "\n",
                "NeMo has an experiment manager that handles logging and checkpointing for us, so let's use it:"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "8uztqGAmdrYt"
            },
            "outputs": [],
            "source": [
                "config.exp_manager.exp_dir = WORK_DIR\n",
                "exp_dir = exp_manager(trainer, config.get(\"exp_manager\", None))\n",
                "\n",
                "# the exp_dir provides a path to the current experiment for easy access\n",
                "exp_dir = str(exp_dir)\n",
                "exp_dir"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "8tjLhUvL_o7_"
            },
            "source": [
                "To load the pretrained BERT LM model, we can get the list of names by following command "
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "from nemo.collections.nlp.models.language_modeling.megatron_bert_model import MegatronBertModel\n",
                "print([model.pretrained_model_name for model in MegatronBertModel.list_available_models()])"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "We can change the `model.language_mode` config to use it\n",
                "```python\n",
                "# add the specified above model parameters to the config\n",
                "config.model.language_model.pretrained_model_name = MODEL_NAME\n",
                "```\n",
                "\n",
                "In this notebook, we will use 'biomegatron345m_biovocab_30k_cased', which is BioMegatron, [Megatron-LM BERT](https://arxiv.org/abs/1909.08053) pre-trained on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) biomedical text corpus."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "RK2xglXyAUOO"
            },
            "outputs": [],
            "source": [
                "# add the specified above model parameters to the config\n",
                "# config.model.language_model.pretrained_model_name = PRETRAINED_BERT_MODEL\n",
                "config.model.language_model.lm_checkpoint = None\n",
                "config.model.language_model.pretrained_model_name = 'biomegatron345m_biovocab_30k_cased'\n",
                "config.model.tokenizer.tokenizer_name=None"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "fzNZNAVRjDD-"
            },
            "source": [
                "Now, we are ready to initialize our model. During the model initialization call, the dataset and data loaders we'll be prepared for training and evaluation.\n",
                "Also, the pretrained BERT model will be downloaded, note it can take up to a few minutes depending on the size of the chosen BERT model."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "NgsGLydWo-6-"
            },
            "outputs": [],
            "source": [
                "model = nemo_nlp.models.TextClassificationModel(cfg=config.model, trainer=trainer)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "kQ592Tx4pzyB"
            },
            "source": [
                "## Monitoring training progress\n",
                "Optionally, you can create a Tensorboard visualization to monitor training progress.\n",
                "If you're not using Colab, refer to [https://www.tensorflow.org/tensorboard/tensorboard_in_notebooks](https://www.tensorflow.org/tensorboard/tensorboard_in_notebooks) if you're facing issues with running the cell below."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "mTJr16_pp0aS"
            },
            "outputs": [],
            "source": [
                "try:\n",
                "    from google import colab\n",
                "    COLAB_ENV = True\n",
                "except (ImportError, ModuleNotFoundError):\n",
                "    COLAB_ENV = False\n",
                "\n",
                "# Load the TensorBoard notebook extension\n",
                "if COLAB_ENV:\n",
                "    %load_ext tensorboard\n",
                "    %tensorboard --logdir {exp_dir}\n",
                "else:\n",
                "    print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "hUvnSpyjp0Dh"
            },
            "outputs": [],
            "source": [
                "# start model training\n",
                "trainer.fit(model)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "ref1qSonGNhP"
            },
            "source": [
                "## Training Script\n",
                "\n",
                "If you have NeMo installed locally, you can also train the model with `examples/nlp/text_classification/text_classification_with_bert.py.`\n",
                "\n",
                "To run training script, use:\n",
                "\n",
                "```bash\n",
                "python text_classification_with_bert.py \\\n",
                " model.dataset.data_dir=PATH_TO_DATA_DIR \\\n",
                " model.task_name=TASK \\\n",
                " exp_manager.exp_dir=EXP_DIR \\\n",
                " model.language_model.pretrained_model_name=biomegatron345m_biovocab_30k_cased \\\n",
                " model.tokenizer.library=megatron \n",
                " ```\n"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "The training could take several minutes and the results should look something like:\n",
                "\n",
                "```\n",
                "precision    recall  f1-score   support\n",
                "    \n",
                "               0     0.7328    0.8348    0.7805       115\n",
                "               1     0.9402    0.9291    0.9346      7950\n",
                "               2     0.8311    0.9146    0.8708       199\n",
                "               3     0.6400    0.6302    0.6351       457\n",
                "               4     0.8002    0.8317    0.8156      1093\n",
                "               5     0.7228    0.7518    0.7370       548\n",
                "    \n",
                "        accuracy                         0.8949     10362\n",
                "       macro avg     0.7778    0.8153    0.7956     10362\n",
                "    weighted avg     0.8963    0.8949    0.8954     10362\n",
                "```"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": []
        }
    ],
    "metadata": {
        "accelerator": "GPU",
        "colab": {
            "collapsed_sections": [],
            "name": "Relation_Extraction-BioMegatron.ipynb",
            "private_outputs": true,
            "provenance": []
        },
        "kernelspec": {
            "display_name": "Python 3 (ipykernel)",
            "language": "python",
            "name": "python3"
        },
        "language_info": {
            "codemirror_mode": {
                "name": "ipython",
                "version": 3
            },
            "file_extension": ".py",
            "mimetype": "text/x-python",
            "name": "python",
            "nbconvert_exporter": "python",
            "pygments_lexer": "ipython3",
            "version": "3.8.12"
        },
        "pycharm": {
            "stem_cell": {
                "cell_type": "raw",
                "metadata": {
                    "collapsed": false
                },
                "source": []
            }
        }
    },
    "nbformat": 4,
    "nbformat_minor": 1
}