File size: 45,360 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "jaosjY4rGRNH"
},
"source": [
"# Installing NeMo from source\n",
"\n",
"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run the cell below to set up dependencies.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "goQzOSflEq27"
},
"outputs": [],
"source": [
"import os \n",
"BRANCH = 'r1.17.0'\n",
"!apt-get update && apt-get install -y libsndfile1 ffmpeg\n",
"!git clone https://github.com/NVIDIA/NeMo --branch $BRANCH\n",
"os.chdir('NeMo')\n",
"!./reinstall.sh\n",
"os.chdir('..')\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GjQ_z_xQMDIb"
},
"source": [
"# Overview\n",
"\n",
"There are three tasks as part of this tutorial\n",
"\n",
"1. Intent and Slot Classification using Assistant Dataset and a BERT model\n",
"2. Intent Classification using Schema Guided Dialogue Dataset and a GPT2 model\n",
"3. Answer Extender using MS Marco NLGen Dataset and a BART model\n",
"\n",
"Feel free to skip to the task that interests you most after installing NeMo from source."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AS-zwy8tEq2_"
},
"source": [
"# 1. Intent and Slot Classification using Assistant Dataset\n",
"\n",
"## 1.1 Task Description\n",
"\n",
"**Joint Intent and Slot classification** - is a task of classifying an Intent and detecting all relevant Slots (Entities)\n",
"for this Intent in a query.\n",
"For example, in the query: `What is the weather in Santa Clara tomorrow morning?`, we would like to classify the query\n",
"as a `weather` Intent, and detect `Santa Clara` as a `location` slot and `tomorrow morning` as a `date_time` slot.\n",
"Intents and Slots names are usually task specific and defined as labels in the training data.\n",
"This is a fundamental step that is executed in any task-driven Conversational Assistant.\n",
"\n",
"Our model enables to train and then detect both of these tasks together.\n",
"\n",
"Note: There is a similar model available at [Joint Intent Slot Classification Colab](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/nlp/Joint_Intent_and_Slot_Classification.ipynb). However, this model only support BERT style models while the model in this tutorial supports other types of models such as GPT2. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FJk_UAyeEq3B"
},
"source": [
"\n",
"## 1.2 Download Assistant dataset and convert to NeMo format\n",
"\n",
"This is a virtual assistant interaction data set that can be downloaded from here: https://github.com/xliuhw/NLU-Evaluation-Data.\n",
"There are about 10K training and 1K testing queries which cover 64 various Intents and 55 Slots. \n",
"\n",
"An example is:\n",
"\n",
"* utterance: what alarms have i set for tomorrow \n",
"* intent: alarm_query\n",
"* slots: date(tomorrow)\n",
"\n",
"\n",
"Note: While only the assistant dataset is used here, import_dataset.py is also compatible with ATIS and SNIPS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jjOVdGX2Eq3D"
},
"outputs": [],
"source": [
"# download and unzip the example dataset from github\n",
"!wget https://github.com/xliuhw/NLU-Evaluation-Data/archive/master.zip\n",
"!unzip master.zip\n",
"# convert the dataset to the NeMo format\n",
"!python NeMo/scripts/dataset_processing/nlp/intent_and_slot/import_datasets.py --dataset_name=assistant --source_data_dir=./NLU-Evaluation-Data-master --target_data_dir=./assistant"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5n81deZsEq3G"
},
"source": [
"## 1.3 Training and/or Testing the model\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "eoYc_8jhEq3G"
},
"outputs": [],
"source": [
"# model.dataset.data_dir: folder to load data from\n",
"# model.dataset.dialogues_example_dir: folder that stores predictions for each sample\n",
"!(python NeMo/examples/nlp/dialogue/dialogue.py \\\n",
" do_training=True \\\n",
" model.dataset.data_dir='./assistant' \\\n",
" model.dataset.dialogues_example_dir='./assistant_bert_examples' \\\n",
" model.dataset.task='assistant' \\\n",
" model.language_model.pretrained_model_name='bert-base-uncased' \\\n",
" exp_manager.create_wandb_logger=False)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GaPmHjayEbg8"
},
"source": [
"**Results after 3 epochs**\n",
"\n",
"Intent report: \n",
"```\n",
" label precision recall f1 support \n",
" alarm_query (label_id: 0) 100.00 94.44 97.14 18\n",
" alarm_remove (label_id: 1) 100.00 90.91 95.24 11\n",
" alarm_set (label_id: 2) 94.12 94.12 94.12 17\n",
" audio_volume_down (label_id: 3) 75.00 42.86 54.55 7\n",
" audio_volume_mute (label_id: 4) 100.00 92.86 96.30 14\n",
" audio_volume_up (label_id: 5) 72.22 100.00 83.87 13\n",
" calendar_query (label_id: 6) 87.50 77.78 82.35 18\n",
" calendar_remove (label_id: 7) 94.44 100.00 97.14 17\n",
" calendar_set (label_id: 8) 94.44 94.44 94.44 18\n",
" cooking_recipe (label_id: 9) 85.71 70.59 77.42 17\n",
" datetime_convert (label_id: 10) 88.89 100.00 94.12 8\n",
" datetime_query (label_id: 11) 89.47 100.00 94.44 17\n",
" email_addcontact (label_id: 12) 80.00 100.00 88.89 8\n",
" email_query (label_id: 13) 100.00 83.33 90.91 18\n",
" email_querycontact (label_id: 14) 78.95 88.24 83.33 17\n",
" email_sendemail (label_id: 15) 94.44 94.44 94.44 18\n",
" general_affirm (label_id: 16) 100.00 100.00 100.00 17\n",
" general_commandstop (label_id: 17) 100.00 100.00 100.00 18\n",
" general_confirm (label_id: 18) 100.00 100.00 100.00 17\n",
" general_dontcare (label_id: 19) 100.00 100.00 100.00 18\n",
" general_explain (label_id: 20) 100.00 100.00 100.00 17\n",
" general_joke (label_id: 21) 91.67 100.00 95.65 11\n",
" general_negate (label_id: 22) 100.00 100.00 100.00 18\n",
" general_praise (label_id: 23) 100.00 100.00 100.00 17\n",
" general_quirky (label_id: 24) 60.00 50.00 54.55 18\n",
" general_repeat (label_id: 25) 100.00 100.00 100.00 17\n",
" iot_cleaning (label_id: 26) 100.00 100.00 100.00 15\n",
" iot_coffee (label_id: 27) 85.71 100.00 92.31 18\n",
" iot_hue_lightchange (label_id: 28) 100.00 94.12 96.97 17\n",
" iot_hue_lightdim (label_id: 29) 100.00 100.00 100.00 12\n",
" iot_hue_lightoff (label_id: 30) 100.00 100.00 100.00 17\n",
" iot_hue_lighton (label_id: 31) 100.00 50.00 66.67 4\n",
" iot_hue_lightup (label_id: 32) 84.62 91.67 88.00 12\n",
" iot_wemo_off (label_id: 33) 100.00 100.00 100.00 9\n",
" iot_wemo_on (label_id: 34) 100.00 85.71 92.31 7\n",
" lists_createoradd (label_id: 35) 90.00 100.00 94.74 18\n",
" lists_query (label_id: 36) 100.00 94.12 96.97 17\n",
" lists_remove (label_id: 37) 88.89 88.89 88.89 18\n",
" music_likeness (label_id: 38) 100.00 93.75 96.77 16\n",
" music_query (label_id: 39) 100.00 100.00 100.00 17\n",
" music_settings (label_id: 40) 77.78 100.00 87.50 7\n",
" news_query (label_id: 41) 72.73 88.89 80.00 18\n",
" play_audiobook (label_id: 42) 100.00 100.00 100.00 17\n",
" play_game (label_id: 43) 93.75 83.33 88.24 18\n",
" play_music (label_id: 44) 85.00 100.00 91.89 17\n",
" play_podcasts (label_id: 45) 100.00 88.89 94.12 18\n",
" play_radio (label_id: 46) 84.21 94.12 88.89 17\n",
" qa_currency (label_id: 47) 85.00 94.44 89.47 18\n",
" qa_definition (label_id: 48) 89.47 100.00 94.44 17\n",
" qa_factoid (label_id: 49) 64.00 88.89 74.42 18\n",
" qa_maths (label_id: 50) 84.62 84.62 84.62 13\n",
" qa_stock (label_id: 51) 87.50 77.78 82.35 18\n",
" recommendation_events (label_id: 52) 87.50 82.35 84.85 17\n",
" recommendation_locations (label_id: 53) 83.33 83.33 83.33 18\n",
" recommendation_movies (label_id: 54) 100.00 60.00 75.00 10\n",
" social_post (label_id: 55) 100.00 94.12 96.97 17\n",
" social_query (label_id: 56) 100.00 82.35 90.32 17\n",
" takeaway_order (label_id: 57) 92.31 70.59 80.00 17\n",
" takeaway_query (label_id: 58) 93.75 83.33 88.24 18\n",
" transport_query (label_id: 59) 81.25 76.47 78.79 17\n",
" transport_taxi (label_id: 60) 100.00 100.00 100.00 16\n",
" transport_ticket (label_id: 61) 85.00 94.44 89.47 18\n",
" transport_traffic (label_id: 62) 93.75 88.24 90.91 17\n",
" weather_query (label_id: 63) 89.47 100.00 94.44 17\n",
" -------------------\n",
" micro avg 91.16 91.16 91.16 996\n",
" macro avg 91.66 90.44 90.48 996\n",
" weighted avg 91.72 91.16 91.04 996\n",
"```\n",
"Slot report: \n",
"```\n",
" label precision recall f1 support \n",
" alarm_type (label_id: 0) 0.00 0.00 0.00 2\n",
" app_name (label_id: 1) 0.00 0.00 0.00 1\n",
" artist_name (label_id: 2) 17.39 80.00 28.57 5\n",
" audiobook_author (label_id: 3) 0.00 0.00 0.00 0\n",
" audiobook_name (label_id: 4) 64.52 74.07 68.97 27\n",
" business_name (label_id: 5) 81.48 84.62 83.02 52\n",
" business_type (label_id: 6) 80.00 80.00 80.00 20\n",
" change_amount (label_id: 7) 57.14 66.67 61.54 6\n",
" coffee_type (label_id: 8) 100.00 33.33 50.00 3\n",
" color_type (label_id: 9) 75.00 92.31 82.76 13\n",
" cooking_type (label_id: 10) 0.00 0.00 0.00 1\n",
" currency_name (label_id: 11) 100.00 96.43 98.18 28\n",
" date (label_id: 12) 87.88 87.22 87.55 133\n",
" definition_word (label_id: 13) 85.00 85.00 85.00 20\n",
" device_type (label_id: 14) 84.75 76.92 80.65 65\n",
" drink_type (label_id: 15) 0.00 0.00 0.00 0\n",
" email_address (label_id: 16) 64.29 100.00 78.26 9\n",
" email_folder (label_id: 17) 100.00 50.00 66.67 2\n",
" event_name (label_id: 18) 80.00 75.00 77.42 64\n",
" food_type (label_id: 19) 84.38 77.14 80.60 35\n",
" game_name (label_id: 20) 93.55 78.38 85.29 37\n",
" game_type (label_id: 21) 0.00 0.00 0.00 0\n",
" general_frequency (label_id: 22) 0.00 0.00 0.00 9\n",
" house_place (label_id: 23) 80.95 91.89 86.08 37\n",
" ingredient (label_id: 24) 0.00 0.00 0.00 1\n",
" joke_type (label_id: 25) 100.00 100.00 100.00 5\n",
" list_name (label_id: 26) 89.29 69.44 78.12 36\n",
" meal_type (label_id: 27) 0.00 0.00 0.00 3\n",
" media_type (label_id: 28) 78.95 83.33 81.08 36\n",
" movie_name (label_id: 29) 0.00 0.00 0.00 1\n",
" movie_type (label_id: 30) 0.00 0.00 0.00 0\n",
" music_album (label_id: 31) 0.00 0.00 0.00 0\n",
" music_descriptor (label_id: 32) 0.00 0.00 0.00 2\n",
" music_genre (label_id: 33) 81.82 90.00 85.71 10\n",
" news_topic (label_id: 34) 80.00 30.77 44.44 13\n",
" order_type (label_id: 35) 100.00 42.11 59.26 19\n",
" person (label_id: 36) 70.79 100.00 82.89 63\n",
" personal_info (label_id: 37) 76.19 94.12 84.21 17\n",
" place_name (label_id: 38) 82.86 84.47 83.65 103\n",
" player_setting (label_id: 39) 75.00 42.86 54.55 7\n",
" playlist_name (label_id: 40) 0.00 0.00 0.00 3\n",
" podcast_descriptor (label_id: 41) 92.31 54.55 68.57 22\n",
" podcast_name (label_id: 42) 66.67 16.67 26.67 12\n",
" radio_name (label_id: 43) 94.87 94.87 94.87 39\n",
" relation (label_id: 44) 90.91 90.91 90.91 11\n",
" song_name (label_id: 45) 100.00 6.67 12.50 15\n",
" time (label_id: 46) 77.57 84.69 80.98 98\n",
" time_zone (label_id: 47) 44.44 100.00 61.54 4\n",
" timeofday (label_id: 48) 86.96 80.00 83.33 25\n",
" transport_agency (label_id: 49) 80.00 57.14 66.67 7\n",
" transport_descriptor (label_id: 50) 0.00 0.00 0.00 5\n",
" transport_name (label_id: 51) 0.00 0.00 0.00 0\n",
" transport_type (label_id: 52) 88.89 100.00 94.12 40\n",
" weather_descriptor (label_id: 53) 87.50 87.50 87.50 8\n",
" O (label_id: 54) 97.07 97.52 97.30 5408\n",
" -------------------\n",
" micro avg 94.24 94.24 94.24 6582\n",
" macro avg 64.87 59.93 59.17 6582\n",
" weighted avg 94.23 94.24 93.95 6582\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-44x5PqyrOeQ"
},
"source": [
"## 1.4 (Optional) To train/ test a GPT2 model on the assistant dataset, run the cell below "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QyqQbpR4rNHT"
},
"outputs": [],
"source": [
"# model.dataset.data_dir: folder to load data from\n",
"# model.dataset.dialogues_example_dir: folder that stores predictions for each sample\n",
"# model.tokenizer.special_tokens=\"{pad_token:'<|endoftext|>'}\": gpt2 doesn't specify a pad token, therefore using its EOS token as the pad token\n",
"# model.dataset.target_template=with_slots: this perform slot filling with intent classification\n",
"!(python NeMo/examples/nlp/dialogue/dialogue.py \\\n",
" do_training=True \\\n",
" model.dataset.data_dir='./assistant' \\\n",
" model.dataset.dialogues_example_dir='./assistant_gpt2_examples' \\\n",
" model.dataset.task='assistant' \\\n",
" model.language_model.pretrained_model_name='gpt2' \\\n",
" trainer.max_epochs=1 \\\n",
" model.tokenizer.special_tokens=\"{pad_token:'<|endoftext|>'}\" \\\n",
" model.dataset.target_template=with_slots \\\n",
" model.dataset.eval_mode=generation \\\n",
" exp_manager.create_wandb_logger=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FbQ-6TVM1yQg"
},
"source": [
"**After 1 epoch:**\n",
"\n",
"More epochs would be helpful\n",
"\n",
"Intent report:\n",
"\n",
" ```\n",
" label precision recall f1 support \n",
" transport query (label_id: 0) 72.73 84.21 78.05 19\n",
" weather query (label_id: 1) 94.74 94.74 94.74 19\n",
" play game (label_id: 2) 92.86 68.42 78.79 19\n",
" qa currency (label_id: 3) 100.00 100.00 100.00 19\n",
" qa maths (label_id: 4) 100.00 100.00 100.00 14\n",
" iot wemo off (label_id: 5) 75.00 100.00 85.71 9\n",
" datetime convert (label_id: 6) 46.67 87.50 60.87 8\n",
" email addcontact (label_id: 7) 70.00 87.50 77.78 8\n",
" music likeness (label_id: 8) 57.89 61.11 59.46 18\n",
" music query (label_id: 9) 78.57 57.89 66.67 19\n",
" general negate (label_id: 10) 95.00 100.00 97.44 19\n",
" email sendemail (label_id: 11) 92.86 68.42 78.79 19\n",
" general affirm (label_id: 12) 95.00 100.00 97.44 19\n",
" play audiobook (label_id: 13) 57.69 78.95 66.67 19\n",
" general praise (label_id: 14) 100.00 94.74 97.30 19\n",
" alarm set (label_id: 15) 85.71 94.74 90.00 19\n",
" general explain (label_id: 16) 100.00 89.47 94.44 19\n",
" iot wemo on (label_id: 17) 83.33 71.43 76.92 7\n",
" cooking recipe (label_id: 18) 90.00 94.74 92.31 19\n",
" music settings (label_id: 19) 60.00 42.86 50.00 7\n",
" social post (label_id: 20) 84.21 84.21 84.21 19\n",
" recommendation events (label_id: 21) 72.73 84.21 78.05 19\n",
" audio volume up (label_id: 22) 76.47 100.00 86.67 13\n",
" lists remove (label_id: 23) 73.08 100.00 84.44 19\n",
" transport ticket (label_id: 24) 94.74 94.74 94.74 19\n",
" general joke (label_id: 25) 100.00 100.00 100.00 12\n",
" play podcasts (label_id: 26) 94.12 84.21 88.89 19\n",
" iot hue lightchange (label_id: 27) 85.71 63.16 72.73 19\n",
" audio volume mute (label_id: 28) 84.62 73.33 78.57 15\n",
" general dontcare (label_id: 29) 95.00 100.00 97.44 19\n",
" qa definition (label_id: 30) 77.27 89.47 82.93 19\n",
" email querycontact (label_id: 31) 58.33 73.68 65.12 19\n",
" general commandstop (label_id: 32) 100.00 100.00 100.00 19\n",
" calendar remove (label_id: 33) 94.44 89.47 91.89 19\n",
" news query (label_id: 34) 100.00 57.89 73.33 19\n",
" calendar query (label_id: 35) 63.16 63.16 63.16 19\n",
" social query (label_id: 36) 88.24 83.33 85.71 18\n",
" transport traffic (label_id: 37) 90.48 100.00 95.00 19\n",
" transport taxi (label_id: 38) 100.00 94.44 97.14 18\n",
" alarm query (label_id: 39) 100.00 94.74 97.30 19\n",
" iot hue lightoff (label_id: 40) 88.89 84.21 86.49 19\n",
" takeaway order (label_id: 41) 81.25 68.42 74.29 19\n",
" iot coffee (label_id: 42) 100.00 94.74 97.30 19\n",
" recommendation movies (label_id: 43) 75.00 90.00 81.82 10\n",
" iot hue lightup (label_id: 44) 78.57 78.57 78.57 14\n",
" email query (label_id: 45) 85.71 94.74 90.00 19\n",
" lists createoradd (label_id: 46) 82.35 73.68 77.78 19\n",
" play radio (label_id: 47) 84.21 84.21 84.21 19\n",
" audio volume down (label_id: 48) 100.00 87.50 93.33 8\n",
" general quirky (label_id: 49) 30.00 15.79 20.69 19\n",
" play music (label_id: 50) 71.43 52.63 60.61 19\n",
" qa stock (label_id: 51) 90.48 100.00 95.00 19\n",
" iot cleaning (label_id: 52) 93.33 87.50 90.32 16\n",
" iot hue lightdim (label_id: 53) 100.00 100.00 100.00 12\n",
" recommendation locations (label_id: 54) 100.00 89.47 94.44 19\n",
" general repeat (label_id: 55) 100.00 100.00 100.00 19\n",
" takeaway query (label_id: 56) 77.27 89.47 82.93 19\n",
" alarm remove (label_id: 57) 100.00 100.00 100.00 11\n",
" datetime query (label_id: 58) 75.00 63.16 68.57 19\n",
" iot hue lighton (label_id: 59) 60.00 100.00 75.00 3\n",
" qa factoid (label_id: 60) 50.00 57.89 53.66 19\n",
" calendar set (label_id: 61) 75.00 78.95 76.92 19\n",
" general confirm (label_id: 62) 100.00 100.00 100.00 19\n",
" lists query (label_id: 63) 66.67 73.68 70.00 19\n",
" label_id: 64 0.00 0.00 0.00 0\n",
" -------------------\n",
" micro avg 83.55 83.55 83.55 1076\n",
" macro avg 83.53 83.93 83.01 1076\n",
" weighted avg 84.26 83.55 83.30 1076\n",
" \n",
"```\n",
"\n",
"```\n",
"ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
" Test metric DataLoader 0\n",
"ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
" intent_f1 83.55018615722656\n",
" intent_precision 83.55018615722656\n",
" intent_recall 83.55018615722656\n",
" slot_f1 73.99985919756773\n",
"slot_joint_goal_accuracy 65.89219330855019\n",
" slot_precision 73.85223048327137\n",
" slot_recall 74.14807930607186\n",
" test_intent_accuracy 83.55018587360595\n",
" test_loss_epoch 0.019178826361894608\n",
"ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Gd42arYoEq3J"
},
"source": [
"# 2. Schema Guided Dialogue (SGD)\n",
"\n",
"## 2.1 Task Description\n",
"---\n",
"\n",
"SGD is a multi-domain intent classification dataset from Google with close to 100k examples.\n",
"\n",
"An example is:\n",
"\n",
"* utterance: I will be eating there at 11:30 am so make the reservation for then.\n",
"* intent: ReserveRestaurant\n",
"* slots: {\"time\": \"11:30 am\"}\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "neH8rXwjEq3J"
},
"source": [
"## 2.2 Download the dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IgD8eavfJ5pi"
},
"outputs": [],
"source": [
"!git clone https://github.com/google-research-datasets/dstc8-schema-guided-dialogue.git"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7G7uPrUpEq3J"
},
"source": [
"## 2.3 Training and/or Testing the model\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gqo-rwQlEq3K"
},
"outputs": [],
"source": [
"# model.dataset.data_dir: folder to load data from\n",
"# model.dataset.dialogues_example_dir: folder that stores predictions for each sample\n",
"# model.tokenizer.special_tokens=\"{pad_token:'<|endoftext|>'}\": gpt2 doesn't specify a pad token, therefore using its EOS token as the pad token\n",
"\n",
"!(python NeMo/examples/nlp/dialogue/dialogue.py \\\n",
" do_training=True \\\n",
" model.dataset.data_dir='./dstc8-schema-guided-dialogue' \\\n",
" model.dataset.dialogues_example_dir='./sgd_gpt2_predictions' \\\n",
" model.dataset.task='sgd' \\\n",
" model.language_model.pretrained_model_name='gpt2' \\\n",
" trainer.max_epochs=1 \\\n",
" model.tokenizer.special_tokens=\"{pad_token:'<|endoftext|>'}\" \\\n",
" exp_manager.create_wandb_logger=False)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kGDlV5HvI2PQ"
},
"outputs": [],
"source": [
"!ls sgd_gpt2_predictions"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "p8g0f5KDTu9K"
},
"source": [
"**After 1 epoch:**\n",
"\n",
"More epochs would needed to reach convergence.\n",
"\n",
"\n",
"```\n",
" label precision recall f1 support \n",
" check balance (label_id: 0) 0.00 0.00 0.00 0\n",
" find trains (label_id: 1) 80.20 91.95 85.68 348\n",
" make payment (label_id: 2) 83.12 28.07 41.97 228\n",
" book appointment (label_id: 3) 86.93 87.15 87.04 397\n",
" get cars available (label_id: 4) 96.88 90.51 93.58 274\n",
" get event dates (label_id: 5) 0.00 0.00 0.00 0\n",
" buy bus ticket (label_id: 6) 78.61 91.33 84.49 173\n",
" add event (label_id: 7) 0.00 0.00 0.00 0\n",
" get alarms (label_id: 8) 58.33 77.78 66.67 45\n",
" reserve car (label_id: 9) 83.75 72.43 77.68 185\n",
" get events (label_id: 10) 0.00 0.00 0.00 0\n",
" reserve roundtrip flights (label_id: 11) 0.00 0.00 0.00 0\n",
" lookup music (label_id: 12) 89.83 86.89 88.33 61\n",
" book house (label_id: 13) 91.13 92.50 91.81 200\n",
" search oneway flight (label_id: 14) 74.77 47.70 58.25 174\n",
" buy event tickets (label_id: 15) 72.19 95.31 82.15 128\n",
" find apartment (label_id: 16) 0.00 0.00 0.00 0\n",
" schedule visit (label_id: 17) 77.27 66.06 71.23 386\n",
" play media (label_id: 18) 92.94 86.81 89.77 91\n",
" get ride (label_id: 19) 99.41 98.82 99.12 170\n",
" reserve oneway flight (label_id: 20) 0.00 0.00 0.00 0\n",
" find bus (label_id: 21) 96.64 87.53 91.86 361\n",
" find restaurants (label_id: 22) 77.14 91.22 83.59 148\n",
" get times for movie (label_id: 23) 0.00 0.00 0.00 0\n",
" transfer money (label_id: 24) 0.00 0.00 0.00 0\n",
" request payment (label_id: 25) 46.71 63.39 53.79 112\n",
" play movie (label_id: 26) 100.00 65.11 78.87 321\n",
" search house (label_id: 27) 97.91 91.83 94.77 306\n",
" search roundtrip flights (label_id: 28) 67.49 82.41 74.21 199\n",
" find provider (label_id: 29) 95.11 90.53 92.77 602\n",
" find attractions (label_id: 30) 100.00 89.01 94.19 91\n",
" reserve hotel (label_id: 31) 56.75 97.04 71.62 169\n",
" lookup song (label_id: 32) 0.00 0.00 0.00 0\n",
" add alarm (label_id: 33) 95.68 60.18 73.89 221\n",
" find home by area (label_id: 34) 48.95 59.79 53.83 194\n",
" get available time (label_id: 35) 0.00 0.00 0.00 0\n",
" buy movie tickets (label_id: 36) 100.00 29.39 45.42 473\n",
" reserve restaurant (label_id: 37) 95.71 84.80 89.92 342\n",
" find movies (label_id: 38) 62.40 97.61 76.14 335\n",
" get weather (label_id: 39) 100.00 87.69 93.44 195\n",
" search hotel (label_id: 40) 99.35 52.60 68.78 289\n",
" find events (label_id: 41) 99.57 82.56 90.27 281\n",
" play song (label_id: 42) 0.00 0.00 0.00 0\n",
" rent movie (label_id: 43) 0.00 0.00 0.00 0\n",
" get train tickets (label_id: 44) 45.83 5.56 9.91 198\n",
" none (label_id: 45) 55.77 98.90 71.32 728\n",
" label_id: 46 0.00 0.00 0.00 0\n",
" -------------------\n",
" micro avg 77.23 77.23 77.23 8425\n",
" macro avg 82.01 76.68 76.56 8425\n",
" weighted avg 83.23 77.23 76.86 8425\n",
"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jUJb-9VLLBXo"
},
"source": [
"# 3. MS Marco\n",
"\n",
"## Task Description\n",
"\n",
"MS Marco NLGen is a dataset from Microsoft that takes extracted answers and questions and output fluent answers.\n",
"\n",
"An example is \n",
"\n",
"\n",
"* question: What county is Nine Mile in?\n",
"* extracted_answer: Onondaga\n",
"* fluent_answer: Nine Mile is in Onondaga county.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VtXEKG_UQU9u"
},
"source": [
"## Download and unzip files"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "b9avsZ1CEq3K"
},
"outputs": [],
"source": [
"!mkdir ms_marco\n",
"os.chdir('ms_marco')\n",
"!wget https://msmarco.blob.core.windows.net/msmarco/train_v2.1.json.gz\n",
"!wget https://msmarco.blob.core.windows.net/msmarco/dev_v2.1.json.gz\n",
"\n",
"!gunzip train_v2.1.json.gz\n",
"!gunzip dev_v2.1.json.gz\n",
"\n",
"!python ../NeMo/examples/nlp/dialogue/remove_ms_marco_samples_without_wellFormedAnswers.py --filename train_v2.1.json \n",
"!python ../NeMo/examples/nlp/dialogue/remove_ms_marco_samples_without_wellFormedAnswers.py --filename dev_v2.1.json \n",
"\n",
"os.chdir('..')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "h7UZ9R8gQTFo"
},
"source": [
"## Training and/or Testing the model\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fwGQCwbvRf2m"
},
"outputs": [],
"source": [
"# model.dataset.data_dir: folder to load data from\n",
"# model.dataset.dialogues_example_dir: folder that stores predictions for each sample\n",
"\n",
"!(python NeMo/examples/nlp/dialogue/dialogue.py \\\n",
" do_training=True \\\n",
" model.dataset.dialogues_example_dir='./marco_bart_predictions' \\\n",
" model.dataset.data_dir='./ms_marco' \\\n",
" model.save_model=True \\\n",
" model.dataset.debug_mode=True \\\n",
" model.dataset.task='ms_marco' \\\n",
" model.language_model.pretrained_model_name='facebook/bart-base' \\\n",
" trainer.max_epochs=1 \\\n",
" model.dataset.debug_mode=False \\\n",
" exp_manager.create_wandb_logger=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UL7ekAOZ2abi"
},
"source": [
"**After 1 epoch:**\n",
"\n",
"Train more epochs for optimal performance\n",
"\n",
"```\n",
"ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
" Test metric DataLoader 0\n",
"ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
" bleu 65.46179962158203\n",
" f1 78.24439835896995\n",
" precision 81.92473076099847\n",
" recall 76.72508929408436\n",
" test_accuracy 25.563487607283225\n",
" test_loss 0.4419259166606655\n",
" test_loss_epoch 0.4420809745788574\n",
" test_ppl 1.5557004846779854\n",
"ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n",
"```"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Dialogue.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|