File size: 23,965 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
{
    "cells": [
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "X87q4jmW4Rmi"
            },
            "outputs": [],
            "source": [
                "BRANCH = 'r1.17.0'"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "djqHSONJ20X8"
            },
            "outputs": [],
            "source": [
                "\"\"\"\n",
                "You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
                "\n",
                "Instructions for setting up Colab are as follows:\n",
                "1. Open a new Python 3 notebook.\n",
                "2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
                "3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
                "4. Run this cell to set up dependencies.\n",
                "\"\"\"\n",
                "# If you're using Google Colab and not running locally, run this cell\n",
                "\n",
                "# install NeMo\n",
                "BRANCH = 'r1.17.0'\n",
                "!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[nlp]"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "CmvtH0pxHDQC"
            },
            "outputs": [],
            "source": [
                "import os\n",
                "import wget\n",
                "from nemo.collections import nlp as nemo_nlp\n",
                "from nemo.collections import common as nemo_common\n",
                "from omegaconf import OmegaConf"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "J6AARcXXUEbs"
            },
            "source": [
                "# Tokenizers Background\n",
                "\n",
                "For Natural Language Processing, tokenization is an essential part of data preprocessing. It is the process of splitting a string into a list of tokens. One can think of token as parts like a word is a token in a sentence.\n",
                "Depending on the application, different tokenizers are more suitable than others. \n",
                "\n",
                "\n",
                "For example, a WordTokenizer that splits the string on any whitespace, would tokenize the following string \n",
                "\n",
                "\"My first program, Hello World.\" -> [\"My\", \"first\", \"program,\", \"Hello\", \"World.\"]\n",
                "\n",
                "To turn the tokens into numerical model input, the standard method is to use a vocabulary and one-hot vectors for [word embeddings](https://en.wikipedia.org/wiki/Word_embedding). If a token appears in the vocabulary, its index is returned, if not the index of the unknown token is returned to mitigate out-of-vocabulary (OOV).\n",
                "\n",
                "\n"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "Fx7kTz00FL9W"
            },
            "source": [
                "# Tokenizers in NeMo\n",
                "\n",
                "In NeMo, we support the most used tokenization algorithms. We offer a wrapper around [Hugging Faces's AutoTokenizer](https://huggingface.co/transformers/model_doc/auto.html#autotokenizer) - a factory class that gives access to all Hugging Face tokenizers. This includes particularly all BERT-like model tokenizers, such as BertTokenizer, AlbertTokenizer, RobertaTokenizer, GPT2Tokenizer. Apart from that, we also support other tokenizers such as WordTokenizer, CharTokenizer, and [Google's SentencePieceTokenizer](https://github.com/google/sentencepiece).  \n",
                "\n",
                "\n",
                "We make sure that all tokenizers are compatible with BERT-like models, e.g. BERT, Roberta, Albert, and Megatron. For that, we provide a high-level user API `get_tokenizer()`, which allows the user to instantiate a tokenizer model with only four input arguments: \n",
                "* `tokenizer_name: str`\n",
                "* `tokenizer_model: Optional[str] = None`\n",
                "* `vocab_file: Optional[str] = None`\n",
                "* `special_tokens: Optional[Dict[str, str]] = None`\n",
                "\n",
                "Hugging Face and Megatron tokenizers (which uses Hugging Face underneath) can be automatically instantiated by only `tokenizer_name`, which downloads the corresponding `vocab_file` from the internet. \n",
                "\n",
                "For SentencePieceTokenizer, WordTokenizer, and CharTokenizers `tokenizer_model` or/and `vocab_file` can be generated offline in advance using [`scripts/tokenizers/process_asr_text_tokenizer.py`](https://github.com/NVIDIA/NeMo/blob/stable/scripts/tokenizers/process_asr_text_tokenizer.py)\n",
                "\n",
                "The tokenizers in NeMo are designed to be used interchangeably, especially when\n",
                "used in combination with a BERT-based model.\n",
                "\n",
                "Let's take a look at the list of available tokenizers:"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "zp7F45bgX7SU"
            },
            "outputs": [],
            "source": [
                "nemo_nlp.modules.get_tokenizer_list()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "9O-TJpIgG1Mt"
            },
            "source": [
                "# Hugging Face AutoTokenizer"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "5xQdZmj-IuZi"
            },
            "outputs": [],
            "source": [
                "# instantiate tokenizer wrapper using pretrained model name only\n",
                "tokenizer1 = nemo_nlp.modules.get_tokenizer(tokenizer_name=\"bert-base-cased\")\n",
                "\n",
                "# the wrapper has a reference to the original HuggingFace tokenizer\n",
                "print(tokenizer1.tokenizer)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "_Z7__VbTolBK"
            },
            "outputs": [],
            "source": [
                "# check vocabulary (this can be very long)\n",
                "print(tokenizer1.tokenizer.vocab)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "z1CRAkRdonV9"
            },
            "outputs": [],
            "source": [
                "# show all special tokens if it has any\n",
                "print(tokenizer1.tokenizer.all_special_tokens)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "SnE7LetCoCFY"
            },
            "outputs": [],
            "source": [
                "# instantiate tokenizer using custom vocabulary\n",
                "vocab_file = \"myvocab.txt\"\n",
                "vocab = [\"he\", \"llo\", \"world\"]\n",
                "with open(vocab_file, 'w', encoding='utf-8') as vocab_fp:\n",
                "  vocab_fp.write(\"\\n\".join(vocab))"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "UEznqEwRo3Jw"
            },
            "outputs": [],
            "source": [
                "tokenizer2 = nemo_nlp.modules.get_tokenizer(tokenizer_name=\"bert-base-cased\", vocab_file=vocab_file)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "FsdSZ0pYoySH"
            },
            "outputs": [],
            "source": [
                "# Since we did not overwrite special tokens they should be the same as before\n",
                "print(tokenizer1.tokenizer.all_special_tokens == tokenizer2.tokenizer.all_special_tokens )"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Adding Special tokens\n",
                "\n",
                "We do not recommend overwriting special tokens for Hugging Face pretrained models, \n",
                "since these are the commonly used default values. \n",
                "\n",
                "If a user still wants to overwrite the special tokens, specify some of the following keys:"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "apQz4QPHoGRW"
            },
            "outputs": [],
            "source": [
                "special_tokens_dict = {\"unk_token\": \"<UNK>\", \n",
                "                       \"sep_token\": \"<SEP>\", \n",
                "                       \"pad_token\": \"<PAD>\", \n",
                "                       \"bos_token\": \"<CLS>\", \n",
                "                       \"mask_token\": \"<MASK>\",\n",
                "                       \"eos_token\": \"<SEP>\",\n",
                "                       \"cls_token\": \"<CLS>\"}\n",
                "tokenizer3 = nemo_nlp.modules.get_tokenizer(tokenizer_name=\"bert-base-cased\",\n",
                "                                            vocab_file=vocab_file,\n",
                "                                            special_tokens=special_tokens_dict)\n",
                "\n",
                "# print newly set special tokens\n",
                "print(tokenizer3.tokenizer.all_special_tokens)\n",
                "# the special tokens should be different from the previous special tokens\n",
                "print(tokenizer3.tokenizer.all_special_tokens != tokenizer1.tokenizer.all_special_tokens )"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "MA1ttDXro64B"
            },
            "source": [
                "Notice, that if you specify tokens that were not previously included in the tokenizer's vocabulary file, new tokens will be added to the vocabulary file. You will see a message like this:"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "MA1ttDXro64B"
            },
            "source": [
                "`['<MASK>', '<CLS>', '<SEP>', '<PAD>', '<SEP>', '<CLS>', '<UNK>'] \n",
                "     will be added to the vocabulary.\n",
                "    Please resize your model accordingly`"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "# A safer way to add special tokens is the following:\n",
                "\n",
                "# define your model\n",
                "pretrained_model_name = 'bert-base-uncased'\n",
                "config = {\"language_model\": {\"pretrained_model_name\": pretrained_model_name}, \"tokenizer\": {}}\n",
                "omega_conf = OmegaConf.create(config)\n",
                "model = nemo_nlp.modules.get_lm_model(cfg=omega_conf)\n",
                "\n",
                "# define pretrained tokenizer\n",
                "tokenizer_default = nemo_nlp.modules.get_tokenizer(tokenizer_name=pretrained_model_name)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "tokenizer_default.text_to_tokens('<MY_NEW_TOKEN> and another word')"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "As you can see in the above, the tokenizer splits `<MY_NEW_TOKEN>` into subtokens. Let's add this to the special tokens to make sure the tokenizer does not split this into subtokens."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "special_tokens = {'bos_token': '<BOS>',\n",
                "                  'cls_token': '<CSL>',\n",
                "                  'additional_special_tokens': ['<MY_NEW_TOKEN>', '<ANOTHER_TOKEN>']}\n",
                "tokenizer_default.add_special_tokens(special_tokens_dict=special_tokens)\n",
                "\n",
                "# resize your model so that the embeddings for newly added tokens are updated during training/finetuning\n",
                "model.resize_token_embeddings(tokenizer_default.vocab_size)\n",
                "\n",
                "# let's make sure the tokenizer doesn't split our special tokens into subtokens\n",
                "tokenizer_default.text_to_tokens('<MY_NEW_TOKEN> and another word')"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "Now, the model doesn't break down our special token into the subtokens."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "y4Ptfo5dXmk_"
            },
            "source": [
                "## Megatron model tokenizer"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "5zllsvBojxuJ"
            },
            "outputs": [],
            "source": [
                "# Megatron tokenizers are instances of the Hugging Face BertTokenizer. \n",
                "tokenizer4 = nemo_nlp.modules.get_tokenizer(tokenizer_name=\"megatron-bert-cased\")"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "jEgEo0aPj3Ws"
            },
            "source": [
                "# Train custom tokenizer model and vocabulary from text file "
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "ykwKmREuPQE-"
            },
            "source": [
                "We use the [`scripts/tokenizers/process_asr_text_tokenizer.py`](https://github.com/NVIDIA/NeMo/blob/stable/scripts/tokenizers/process_asr_text_tokenizer.py) script to create a custom tokenizer model with its own vocabulary from an input file"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "OD5FUul3QGhA"
            },
            "outputs": [],
            "source": [
                "# download tokenizer script\n",
                "script_file = \"process_asr_text_tokenizer.py\"\n",
                "\n",
                "if not os.path.exists(script_file):\n",
                "    print('Downloading script file...')\n",
                "    wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/scripts/tokenizers/process_asr_text_tokenizer.py')\n",
                "else:\n",
                "    print ('Script already exists')"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "T1gA8PsJ13MJ"
            },
            "outputs": [],
            "source": [
                "# Let's prepare some small text data for the tokenizer\n",
                "data_text = \"NeMo is a toolkit for creating Conversational AI applications. \\\n",
                "NeMo toolkit makes it possible for researchers to easily compose complex neural network architectures \\\n",
                "for conversational AI using reusable components - Neural Modules. \\\n",
                "Neural Modules are conceptual blocks of neural networks that take typed inputs and produce typed outputs. \\\n",
                "Such modules typically represent data layers, encoders, decoders, language models, loss functions, or methods of combining activations. \\\n",
                "The toolkit comes with extendable collections of pre-built modules and ready-to-use models for automatic speech recognition (ASR), \\\n",
                "natural language processing (NLP) and text synthesis (TTS). \\\n",
                "Built for speed, NeMo can utilize NVIDIA's Tensor Cores and scale out training to multiple GPUs and multiple nodes.\""
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "SaqyxVZgpMJk"
            },
            "outputs": [],
            "source": [
                "# Write the text data into a file\n",
                "data_file=\"data.txt\"\n",
                "\n",
                "with open(data_file, 'w') as data_fp:\n",
                "  data_fp.write(data_text)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "iWz31g-opP9z"
            },
            "outputs": [],
            "source": [
                "# Some additional parameters for the tokenizer\n",
                "# To tokenize at unigram, char or word boundary instead of using bpe, change --spe_type accordingly. \n",
                "# More details see https://github.com/google/sentencepiece#train-sentencepiece-model\n",
                "\n",
                "tokenizer_spe_type = \"bpe\"  # <-- Can be `bpe`, `unigram`, `word` or `char`\n",
                "vocab_size = 32"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "mX3KmWMvSUQw"
            },
            "outputs": [],
            "source": [
                "! python process_asr_text_tokenizer.py --data_file=$data_file --data_root=. --vocab_size=$vocab_size --tokenizer=spe --spe_type=$tokenizer_spe_type"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "v6hlcCYyKFiY"
            },
            "outputs": [],
            "source": [
                "# See created tokenizer model and vocabulary\n",
                "spe_model_dir=f\"tokenizer_spe_{tokenizer_spe_type}_v{vocab_size}\"\n",
                "! ls $spe_model_dir"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "EVp4zvxPatga"
            },
            "source": [
                "# Use custom tokenizer for data preprocessing\n",
                "## Example: SentencePiece for BPE"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "0o-XPMrIQBmm"
            },
            "outputs": [],
            "source": [
                "# initialize tokenizer with created tokenizer model, which inherently includes the vocabulary and specify optional special tokens\n",
                "tokenizer_spe = nemo_nlp.modules.get_tokenizer(tokenizer_name=\"sentencepiece\", tokenizer_model=spe_model_dir+\"/tokenizer.model\", special_tokens=special_tokens_dict)\n",
                "\n",
                "# specified special tokens are added to the vocabuary\n",
                "print(tokenizer_spe.vocab_size)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "caafJmVLmEVD"
            },
            "source": [
                "# Using any tokenizer to tokenize text into BERT compatible input\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "ms4DAC4BpvqS"
            },
            "outputs": [],
            "source": [
                "text=\"hello world\"\n",
                "\n",
                "# create tokens\n",
                "tokenized = [tokenizer_spe.bos_token] + tokenizer_spe.text_to_tokens(text) + [tokenizer_spe.eos_token]\n",
                "print(tokenized)\n",
                "\n",
                "# turn token into input_ids for a neural model, such as BERTModule\n",
                "\n",
                "print(tokenizer_spe.tokens_to_ids(tokenized))"
            ]
        }
    ],
    "metadata": {
        "accelerator": "GPU",
        "colab": {
            "collapsed_sections": [],
            "name": "02_NLP_Tokenizers.ipynb",
            "provenance": [],
            "toc_visible": true
        },
        "kernelspec": {
            "display_name": "Python 3 (ipykernel)",
            "language": "python",
            "name": "python3"
        },
        "language_info": {
            "codemirror_mode": {
                "name": "ipython",
                "version": 3
            },
            "file_extension": ".py",
            "mimetype": "text/x-python",
            "name": "python",
            "nbconvert_exporter": "python",
            "pygments_lexer": "ipython3",
            "version": "3.8.12"
        },
        "pycharm": {
            "stem_cell": {
                "cell_type": "raw",
                "metadata": {
                    "collapsed": false
                },
                "source": []
            }
        }
    },
    "nbformat": 4,
    "nbformat_minor": 1
}