File size: 49,075 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"collapsed_sections": [
"dm-qqTdZDUlZ",
"GGKgsW5gvAuf",
"0CqpJGR6ecYW"
],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pEYsuj0J9pId"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GitHub\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"import os\n",
"\n",
"# Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"!pip install matplotlib>=3.3.2\n",
"\n",
"## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
"\n",
"## Grab the config we'll use in this example\n",
"# !mkdir configs\n",
"# !wget -P configs/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml"
]
},
{
"cell_type": "markdown",
"source": [
"# ASR Domain Adaptation with Adapters\n",
"\n",
"Throughout various Automatic Speech Recognition tutorials, you may have noticed that ASR datasets are generally enormous - on the order of hundreds or even thousands of hours of speech. Such a large amount of data imposes significant restrictions on the development of ASR models due to the cost of collection of labeled data (or even unlabeled datasets) and the severe compute cost to train a model on that much data. \n",
"\n",
"We further see that when fine-tuning a pre-trained model, we need large datasets and compute to achieve superior results and avoid overfitting to the new dataset. Worse, by training the entire model (or even just the decoder modules), we severely degrade the model's performance on the original dataset.\n",
"\n",
"-----\n",
"\n",
"In this tutorial, we will showcase **Adapters** : A powerful method to efficiently adapt a pre-trained model to a new dataset (with minimal amounts of data, even just 30 minutes !) with minimal compute resources (on a single GPU, in around 10 minutes of training time).\n"
],
"metadata": {
"id": "cTV4WLrArmxS"
}
},
{
"cell_type": "markdown",
"source": [
"## What are Adapters?\n",
"\n",
"Adapters are a straightforward concept proposed in multiple papers across various domains. For the sake of brevity, we will choose a recent paper [Using Adapters to Overcome Catastrophic Forgetting in End-to-End Automatic Speech Recognition](https://arxiv.org/abs/2203.16082) as a reference for this discussion.\n",
"\n",
"Essentially, an **Adapter** is any **trainable module that is added * after * a model has been trained to convergence**. \n",
"\n",
"- These additional modules form a residual bridge over the output of each layer they adapt, such that the model's original performance is not lost. \n",
"- The original parameters of the model are frozen in their entirety - so that we don't lose performance on the original domain.\n",
"- We train only the new adapter parameters (an insignificant fraction of the total number of parameters). This allows fast experimentation.\n",
"\n",
"-----\n",
"\n",
"Adapters are a straightforward concept - as shown by the diagram below. At their simplest, they are residual Feedforward layers that compress the input dimension ($D$) to a small bottleneck dimension ($H$), such that $R^D \\text{->} R^H$, compute an activation (such as ReLU), finally mapping $R^H \\text{->} R^D$ with another Feedforward layer. This output is then added to the input via a simple residual connection.\n",
"\n",
"<div align=\"center\">\n",
" <img src=\"https://mermaid.ink/img/pako:eNptkLFqwzAQhl9F3ORAPDSjA4EUx6RgXEjbycpwWOdG1JaMfEoakrx7ZcfpUKrlxH_fz4d0gcoqggTqxp6qAzoW76k0Ipx1-WI6z3sRxyuRF1GOZ3KisK6d3YG8GFdZ9hRJeLbMDRmqvkRGpDLrTuiUiEWUigBtlyIVqzBnEqZ66I39dcX6iKytKXeUf-wn-286QoFeBMvmu0PTD-EfyXaQpP9JFmP_1XN4S3kfD8W4ue6o18pjc52gYQlzaMm1qFX4msuQSOADtSQhCdfaOupZgjS3QPpOIdNGabYOkhqbnuaAnu3b2VSQsPP0gFKNnw7bibr9AJkZdXU\" height=100% />\n",
"</div>\n",
"\n",
"-----\n",
"\n",
"Adapter modules such as this are usually initialized. The initial output of the adapter will always be zeros to prevent degradation of the original model's performance due to the addition of such modules."
],
"metadata": {
"id": "f-LSGyL4xw9c"
}
},
{
"cell_type": "markdown",
"source": [
"## Advantages of Adapters\n",
"\n",
"Since adapters are additional parameters added to an already trained network, and due to their construction, they possess multiple beneficial properties.\n",
"\n",
"- **Added parameter cost**: They cost an insignificant number of parameters compared to the original model (generally 0.5% - 1% of the initial parameter count).\n",
"- **Residual bridge**: Adapters are initialized with special care, such that their contribution to the output of each layer they adapt is initially 0. Therefore, after the addition of the adapters, the original model does not lose any accuracy at all (even without training the adapters).\n",
"- **Fast convergence**: Since the adapters only need to learn to modify the module's output slightly, and each adapter has a trivial parameter cost, they converge rapidly.\n",
"- **Adapt only the encoder**: Adapters can be used anywhere, but they are most commonly used in just the encoder, keeping the decoder modules frozen. This allows the decoder to be unaffected by costly CTC/RNN-T training, which takes time to converge, and just the adapter modules in the encoder need to be updated.\n",
"- **Dynamic and flexible adaptation**: Since adapter modules can be added any number of times, a single shared \"core\" model can have multiple adapters that are enabled/disabled dynamically to adapt to numerous scenarios. This potentially offers the case where a single \"core\" model is shared across multiple users, and each user has a small, personal adapter module used for personalization. "
],
"metadata": {
"id": "YGn1__-Jv2Bq"
}
},
{
"cell_type": "markdown",
"source": [
"## Limitations of Adapters\n",
"\n",
"With all those benefits, Adapters have significant drawbacks stemming from how they are currently used.\n",
"\n",
"Note that there is ongoing research to overcome such restrictions, which we hope to incorporate eventually.\n",
"\n",
"- **Frozen decoder modules**: Since the decoder is frozen to avoid forgetting the past training, it does not learn the semantics of the text from the new domain. This may hamper some models more than others.\n",
"- **Frozen tokenization/decoding**: A consequence of the frozen decoder is that we cannot change the vocabulary (or tokenizer) of the decoder layer - as this would cause the model to forget its past training entirely. This also means that **adapters cannot be used to train in a different language than the original language**. The text of the new domain must be supported by the original model's tokenizer/decoder.\n",
" - **Note**: There is nothing fundamentally wrong with still changing the vocabulary of a model that supports adapters. The benefits of adapters will reduce significantly and require costly training (similar in time and memory to finetuning). The model can no longer recover its performance by disabling all of its adapters.\n",
"- **Easy to overfit**: Since adapters enable domain adaptation on very small amounts of speech data, it is trivial to rapidly overfit these datasets and significantly degrade performance on the original domain. \n",
" - **Note**: This can be overcome with some experimentation, further boosted by the fast experimentation cycle that adapters enable."
],
"metadata": {
"id": "8d7y1cygv4MP"
}
},
{
"cell_type": "markdown",
"source": [
"# Dataset preparation\n",
"\n",
"Now that we understand what adapters are and their benefits/drawbacks, we can explore how to set up adapters in NeMo ASR models.\n",
"\n",
"-----\n",
"\n",
"First, we prepare some datasets that the original model was **not trained on**, making it a new domain to be adapted. \n",
"\n",
"In this tutorial, we will be utilizing the `AN4` dataset - also known as the Alphanumeric dataset, which was collected and published by Carnegie Mellon University. We chose this dataset primarily because it is **very small in size** (`<1 hours of training data`), **easy to overfit when training from scratch / fine-tuning by changing the decoder** (`previous tutorials can mostly get around 10-20% WER with fine-tuning without hyperparameter tuning`), and its **text is perfectly supported by the tokenization/decoding scheme of the model**."
],
"metadata": {
"id": "mtYWTi0irkS6"
}
},
{
"cell_type": "code",
"source": [
"import os\n",
"\n",
"if not os.path.exists(\"scripts/\"):\n",
" os.makedirs(\"scripts\")\n",
"\n",
"if not os.path.exists(\"scripts/process_an4_data.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/dataset_processing/process_an4_data.py"
],
"metadata": {
"id": "NpKgT6q5-gNk"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import wget\n",
"import tarfile \n",
"import subprocess \n",
"import glob\n",
"\n",
"data_dir = \"datasets\"\n",
"\n",
"if not os.path.exists(data_dir):\n",
" os.makedirs(data_dir)\n",
"\n",
"# Download the dataset. This will take a few moments...\n",
"print(\"******\")\n",
"if not os.path.exists(data_dir + '/an4_sphere.tar.gz'):\n",
" an4_url = 'https://dldata-public.s3.us-east-2.amazonaws.com/an4_sphere.tar.gz' # for the original source, please visit http://www.speech.cs.cmu.edu/databases/an4/an4_sphere.tar.gz \n",
" an4_path = wget.download(an4_url, data_dir)\n",
" print(f\"Dataset downloaded at: {an4_path}\")\n",
"else:\n",
" print(\"Tarfile already exists.\")\n",
" an4_path = data_dir + '/an4_sphere.tar.gz'\n",
"\n",
"\n",
"if not os.path.exists(data_dir + '/an4/'):\n",
" # Untar and convert .sph to .wav (using sox)\n",
" tar = tarfile.open(an4_path)\n",
" tar.extractall(path=data_dir)\n",
"\n",
" print(\"Converting .sph to .wav...\")\n",
" sph_list = glob.glob(data_dir + '/an4/**/*.sph', recursive=True)\n",
" for sph_path in sph_list:\n",
" wav_path = sph_path[:-4] + '.wav'\n",
" cmd = [\"sox\", sph_path, wav_path]\n",
" subprocess.run(cmd)\n",
"\n",
"print(\"Finished conversion.\\n******\")\n",
"\n",
"if os.path.exists(f\"{data_dir}/an4\"):\n",
" print(\"Preparing AN4 dataset ...\")\n",
"\n",
" an4_path = f\"{data_dir}/\"\n",
" !python scripts/process_an4_data.py \\\n",
" --data_root=$an4_path\n",
"\n",
"print(\"AN4 prepared !\")"
],
"metadata": {
"id": "0wZZuUDi_gEV"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Manifest filepaths\n",
"TRAIN_MANIFEST = os.path.join(data_dir, \"an4\", \"train_manifest.json\")\n",
"TEST_MANIFEST = os.path.join(data_dir, \"an4\", \"test_manifest.json\")"
],
"metadata": {
"id": "9fiqQeWDAXsH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Prepare the \"base\" model\n",
"\n",
"Next, we initialize a small pre-trained model with a relatively small amount of parameters to showcase the efficacy of adapters no matter the original model size.\n",
"\n",
"-----\n",
"\n",
"Most importantly, we discuss a simple way to enable Adapter specific support to a pre-trained model checkpoint - by modifying the `encoder` config before loading the model."
],
"metadata": {
"id": "q2nxi5RzAfZ5"
}
},
{
"cell_type": "code",
"source": [
"import torch\n",
"from omegaconf import OmegaConf, open_dict\n",
"from pytorch_lightning import Trainer\n",
"\n",
"import nemo.collections.asr as nemo_asr"
],
"metadata": {
"id": "F-wt9y5iAali"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model_name = \"stt_en_conformer_ctc_small\""
],
"metadata": {
"id": "uVOfU7gsCI5u"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Prepare an Adapter-compatible Encoder\n",
"\n",
"The original model was trained without any adapters, and therefore its encoder does not support adapters.\n",
"\n",
" To add adapter modules to these models, we perform a few simple steps - \n",
"\n",
"- Extract the model config from the \"base\" model.\n",
"- Update the `encoder` section of the config to a subclass of that model (which does have Adapter support)\n",
"- Initialize the model with this new config, therefore enabling adapter support."
],
"metadata": {
"id": "TitUAeq67Hkl"
}
},
{
"cell_type": "markdown",
"source": [
"- Extract just the config of the model."
],
"metadata": {
"id": "5V5UY-5c8FDv"
}
},
{
"cell_type": "code",
"source": [
"cfg = nemo_asr.models.ASRModel.from_pretrained(model_name, return_config=True)"
],
"metadata": {
"id": "RzwLAHVqAqD9"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from nemo.core import adapter_mixins\n",
"\n",
"# Utility method to check and update the model config\n",
"def update_model_config_to_support_adapter(model_cfg):\n",
" with open_dict(model_cfg):\n",
" adapter_metadata = adapter_mixins.get_registered_adapter(model_cfg.encoder._target_)\n",
" if adapter_metadata is not None:\n",
" model_cfg.encoder._target_ = adapter_metadata.adapter_class_path\n",
" \n",
" print(\"Updated encoder _target_ model :\", model_cfg.encoder._target_)\n",
" return model_cfg"
],
"metadata": {
"id": "O6xAz38-A_Bh"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"- Update the model config's `encoder` section to support Adapters."
],
"metadata": {
"id": "TDk2VMXI8OkG"
}
},
{
"cell_type": "code",
"source": [
"cfg = update_model_config_to_support_adapter(cfg)"
],
"metadata": {
"id": "iyp4xUOLBi0v"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"- Finally load the model with the updated config."
],
"metadata": {
"id": "26NTK00w8VIt"
}
},
{
"cell_type": "code",
"source": [
"model = nemo_asr.models.ASRModel.from_pretrained(model_name, override_config_path=cfg)"
],
"metadata": {
"id": "7r36mkUGBvsy"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Next, we attach a `Trainer` to the model to be appropriately initialized.\n",
"\n",
"Note that we select just **300 update steps**, which is approximately just ten epochs over this dataset at batch sizes of 32. You can experiment with different steps to see the effect of overfitting or underfitting.\n",
"\n",
"**Recommendation**:\n",
"\n",
"You should normally start with 1-5 epochs of adaptation over your entire new domain, and then increase or decrease your number of training steps to trade off a balance in accuracy on general speech."
],
"metadata": {
"id": "x0C2r7388cRd"
}
},
{
"cell_type": "code",
"source": [
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
"max_steps = 300\n",
"\n",
"trainer = Trainer(devices=1, accelerator=accelerator, max_steps=max_steps,\n",
" enable_checkpointing=False, logger=False,\n",
" log_every_n_steps=5, check_val_every_n_epoch=3)\n",
"\n",
"model.set_trainer(trainer)"
],
"metadata": {
"id": "sWRUXzjQMWN5"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# utility method\n",
"import json\n",
"from nemo.collections.asr.parts.utils.manifest_utils import read_manifest\n"
],
"metadata": {
"id": "tJBriqr3tQV7"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## [Optional] Check if the new domain is compatible with the original decoder\n",
"\n",
"The following section, while optional, designs a test to ensure that the text of the new domain can be adequately handled by the original decoder/tokenizer of the model. Please open each cell and execute to perform this sanity check.\n",
"\n",
"-----\n",
"\n",
"If this check fails, the training run might crash, or silently allow the model to learn to produce `⁇` tokens (when using SentencePiece tokenizers)."
],
"metadata": {
"id": "dm-qqTdZDUlZ"
}
},
{
"cell_type": "markdown",
"source": [
"### Parse the base character set"
],
"metadata": {
"id": "UKTiAPV_sdFI"
}
},
{
"cell_type": "code",
"source": [
"train_data = read_manifest(TRAIN_MANIFEST)\n",
"base_sets = [set(list(sample['text'])) for sample in train_data]\n",
"base_charset = set([])\n",
"for charset in base_sets:\n",
" base_charset.update(charset)\n",
"base_charset = list(sorted(list(base_charset)))\n",
"\n",
"print(\"Base charset :\", base_charset)"
],
"metadata": {
"id": "WgogR3taD7NA"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Check if there are invalid characters"
],
"metadata": {
"id": "x-0fzrfPshJj"
}
},
{
"cell_type": "code",
"source": [
"def check_valid_charset_in_vocab(model, charset):\n",
" model_vocab = model.decoder.vocabulary\n",
" num_invalid = 0\n",
"\n",
" for char in charset:\n",
" if char != ' ' and char not in model_vocab:\n",
" print(f\"Character `{char}` does not exist in the base character set of the original model !\")\n",
" num_invalid += 1\n",
"\n",
" print(\"Number of invalid tokens :\", num_invalid)"
],
"metadata": {
"id": "5laUkRf5Eb6l"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"check_valid_charset_in_vocab(model, base_charset)"
],
"metadata": {
"id": "5rEUqs7AFh5j"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Evaluate original performance on AN4 dev set\n",
"\n",
"Now that we possess a model capable of supporting adapters, let us quickly test the performance of the pre-trained model on the AN4 test set without any training or fine-tuning."
],
"metadata": {
"id": "Sf-2EHznGkI1"
}
},
{
"cell_type": "code",
"source": [
"if not os.path.exists('scripts/transcribe_speech.py'):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/transcribe_speech.py\n",
"\n",
"if not os.path.exists('scripts/speech_to_text_eval.py'):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/speech_to_text_eval.py"
],
"metadata": {
"id": "Ak4v4aWjGoQH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# temporarily save current model\n",
"model.save_to(\"/content/unadapted_model.nemo\")"
],
"metadata": {
"id": "OVlBKWCiIHw7"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"The following evaluation script will properly transcribe the AN4 test set, and score it against its ground truth."
],
"metadata": {
"id": "r03iDw9k-dAm"
}
},
{
"cell_type": "code",
"source": [
"!python scripts/speech_to_text_eval.py \\\n",
" model_path=\"/content/unadapted_model.nemo\" \\\n",
" dataset_manifest=$TEST_MANIFEST \\\n",
" output_filename=\"/content/unadapted_predictions.json\" \\\n",
" batch_size=32 \\\n",
" use_cer=False"
],
"metadata": {
"id": "C6YbPt70H0-N"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"------\n",
"\n",
"Check the predictions of the current model"
],
"metadata": {
"id": "2VBQO3w3swu8"
}
},
{
"cell_type": "code",
"source": [
"!head -n 5 /content/unadapted_predictions.json"
],
"metadata": {
"id": "SE8uoRLsJA9F"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Overall, the model does quite well, obtaining roughly 6% Word Error Rate without prior training on this dataset. \n",
"\n",
"**Note**: Pre-trained models in NeMo are trained on several thousands of hours of speech, so it is unsurprising why this model is this accurate without any training on this toy dataset. For more realistic cases, we usually observe the range of 10-30% WER for out-of-domain speech."
],
"metadata": {
"id": "muRBgHHe-n7E"
}
},
{
"cell_type": "markdown",
"source": [
"# Setup training and evaluation of the model\n",
"\n",
"Now that we have a baseline result, let us set up the data loaders of this model to prepare for training on this dataset.\n",
"\n",
"You may note: this step is nearly identical to from scratch training / fine-tuning and skips the tokenizer construction/change vocabulary steps.\n",
"\n",
"**Note**: Each model may have special parameters in their data loader. Please refer to the configs of the pre-trained models to determine what additional changes are necessary). Below recommendations are primarily for Conformer CTC and may differ from model to model.\n",
"\n",
"You can parse the model config via - `print(OmegaConf.to_yaml(model.cfg))`"
],
"metadata": {
"id": "b-L3prIzs3CW"
}
},
{
"cell_type": "markdown",
"source": [
"## Setup dataloaders"
],
"metadata": {
"id": "V2WirN5KJpsD"
}
},
{
"cell_type": "code",
"source": [
"with open_dict(model.cfg):\n",
" # Train Dataloader\n",
" model.cfg.train_ds.manifest_filepath = TRAIN_MANIFEST\n",
" model.cfg.train_ds.batch_size = 32\n",
" model.cfg.train_ds.is_tarred = False\n",
" model.cfg.train_ds.tarred_audio_filepaths = None\n",
"\n",
" model.cfg.validation_ds.manifest_filepath = TEST_MANIFEST\n",
" model.cfg.validation_ds.batch_size = 32\n",
"\n",
"model.setup_training_data(model.cfg.train_ds)\n",
"model.setup_multiple_validation_data(model.cfg.validation_ds)\n",
"model.setup_multiple_test_data(model.cfg.validation_ds)"
],
"metadata": {
"id": "F0GIxhyCJmFv"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Setup Spectrogram Augmentation\n",
"\n",
"For this experiment we will continue to use the original spec augmentation config in the base model, however you may find better results by modifying the strength of this augmentation.\n",
"\n",
"**Note**: The script inside ASR examples **disables spec augment entirely**. This is done in order to provide a stable default to measure the best possible adaptation case, but may severely degrade the performance on general speech. Please be careful when copying the hyper parameters from the tutorial to the script for large scale experimentatin."
],
"metadata": {
"id": "T3VuqcGTNuIJ"
}
},
{
"cell_type": "code",
"source": [
"with open_dict(model.cfg):\n",
" # Spec Augment\n",
" model.cfg.spec_augment.freq_masks = model.cfg.spec_augment.freq_masks # Can be changed\n",
" model.cfg.spec_augment.freq_width = model.cfg.spec_augment.freq_width # Can be changed\n",
" model.cfg.spec_augment.time_masks = model.cfg.spec_augment.time_masks # Can be changed\n",
" model.cfg.spec_augment.time_width = model.cfg.spec_augment.time_width # Can be changed\n",
"\n",
"model.spec_augmentation = model.from_config_dict(model.cfg.spec_augment)"
],
"metadata": {
"id": "T-XFuaA3OlOB"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Setup optimizer and scheduler\n",
"\n",
"An interesting thing to note for adapters is their rapid convergence speed - they do not require hundreds of thousands of update steps (though that is also possible).\n",
"\n",
"For this reason, we have chosen hyperparameter settings that are significantly different from other tutorials - a small learning rate multiplier of 0.1 (for NoamScheduler) and a small warmup phase of just 100 steps (remember, trainer.max_steps is just 300!).\n",
"\n",
"Feel free to modify these values to see the effect on adapters' convergence.\n",
"\n",
"**Note**: The hyper parameters below correspond to the base model and may not match those applied in the ASR examples! Please note that the script the examples defaults to an **AdamW** optimizer with a **CosineAnnealing** scheduler, where as the config of Conformers is geneally a **AdamW** optimizer with a **NoamAnnealing** scheduler. The *learning rate*, *weight decay* and other hyper parameters may not be exactly the same between the tutorial and the example scripts, so please be careful when transferring the hyper parameters for large scale experiments."
],
"metadata": {
"id": "xGpdUWl_tGuA"
}
},
{
"cell_type": "code",
"source": [
"if 'optim' in model.cfg:\n",
" print(OmegaConf.to_yaml(model.cfg.optim))"
],
"metadata": {
"id": "UDEIfMTcP6j6"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"with open_dict(model.cfg):\n",
" model.cfg.optim.lr = 0.1\n",
" model.cfg.optim.weight_decay = 0.0\n",
" model.cfg.optim.sched.warmup_steps = 100\n",
"\n",
"model.setup_optimization(model.cfg.optim);"
],
"metadata": {
"id": "tp_8FGPcKjMd"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Adapters: Supported Components\n",
"\n",
"A NeMo model may have multiple types of adapters that are supported in each of their components. Let us see at a glance what are some of the adapter types supported by the Conformer ASR model.\n",
"\n",
"**Note**: Every domain may support their own types of adapters, and use them in different ways. Please refer to the documentation of each domain for information on the adapter support."
],
"metadata": {
"id": "AGrThAt9Qh0D"
}
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"Let's start with the modules in which the model will support adapters. We can select these adapters with a special syntax to construct \"Module adapters\".\n",
"\n",
"**Note**: `''` refers to the \"default\" adapter - usually the `encoder` but it is model dependent. It may also be that no specific modules are provided, in which case only `default` adapters will be available."
],
"metadata": {
"id": "Wq1JLbNvROcL"
}
},
{
"cell_type": "code",
"source": [
"if hasattr(model, 'adapter_module_names'):\n",
" print(model.adapter_module_names)"
],
"metadata": {
"id": "fRIDhU8RVBwi"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"Next, we can try to obtain the accepted types of each of the child modules in the Model."
],
"metadata": {
"id": "u5BOWWBjfQwN"
}
},
{
"cell_type": "code",
"source": [
"for module in model.children():\n",
" if hasattr(module, 'get_accepted_adapter_types'):\n",
" types = module.get_accepted_adapter_types()\n",
" print(\"Module : \", module.__class__.__name__)\n",
"\n",
" for tp in types:\n",
" print(tp)\n",
" print()"
],
"metadata": {
"id": "iNnSp_azQ2u8"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"As you can see, a single component of the model may support one or more adapter types (or none at all)! Below, we will experiment with the simple Linear Adapters, but as an excercise, you might try to use other adapter types present here."
],
"metadata": {
"id": "YXTC4LiSnB2O"
}
},
{
"cell_type": "markdown",
"source": [
"# Adapters: Creation and Preparation\n",
"\n",
"Now that the data loaders have been prepared, the next step is to add the adapter modules to the model!\n",
"\n",
"----\n",
"\n",
"We first import a config for a basic `LinearAdapter` most often used in literature. \n",
"\n",
"`LinearAdapter` is a simple network comprising LayerNorm, a bottleneck Linear layer, an activation, and an upcast Linear layer (so that input and output channel dim match). We provide some configuration parameters (such as the input dim and the bottleneck dim)."
],
"metadata": {
"id": "WFCUrYxnGPt3"
}
},
{
"cell_type": "code",
"source": [
"from nemo.collections.common.parts.adapter_modules import LinearAdapterConfig"
],
"metadata": {
"id": "oZZr6vSntuyX"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#%% [code]\n",
"#@title Adapter Setup { display-mode: \"form\" }\n",
"adapter_name = \"AN4\" #@param {type:\"string\"}\n",
"adapter_dim = 32 #@param {type:\"integer\"}\n",
"adapter_activation = \"swish\" #@param {type:\"string\"}\n",
"adapter_norm_position = \"pre\" #@param [\"pre\", \"post\"]"
],
"metadata": {
"id": "dlj0Yud4MxOi"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"adapter_cfg = LinearAdapterConfig(\n",
" in_features=model.cfg.encoder.d_model, # conformer specific model dim. Every layer emits this dim at its output.\n",
" dim=adapter_dim, # the bottleneck dimension of the adapter\n",
" activation=adapter_activation, # activation used in bottleneck block\n",
" norm_position=adapter_norm_position, # whether to use LayerNorm at the beginning or the end of the adapter\n",
")\n",
"print(adapter_cfg)"
],
"metadata": {
"id": "Uv8WRQkXU3mu"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Add a new adapter module\n",
"\n",
"Now that our adapter config is ready. Next, we perform a check to see what is the size of the original model and what its size will be after adding the adapter module."
],
"metadata": {
"id": "pIECyKxit58r"
}
},
{
"cell_type": "code",
"source": [
"model.summarize()"
],
"metadata": {
"id": "-MbSTbYiYtnB"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Next, we use `add_adapter` to add adapter blocks to the `encoder`.\n",
"\n",
"A single line can be used to add adapter modules to every layer of the `encoder` module. We pass it a unique name to identify this adapter and the adapter config (which can be helpful to enable or disable adapters later)."
],
"metadata": {
"id": "vjYmPbwCC0LZ"
}
},
{
"cell_type": "code",
"source": [
"model.add_adapter(name=adapter_name, cfg=adapter_cfg)"
],
"metadata": {
"id": "El6ewd1GX9V7"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"As expected, the number of parameters increased by a marginal amount (roughly 200,000 parameters)."
],
"metadata": {
"id": "jMsmj1W-DTSd"
}
},
{
"cell_type": "code",
"source": [
"model.summarize()"
],
"metadata": {
"id": "rIvw0_8iYpHW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Enable / Disable Adapters\n",
"\n",
"Now that we have adapter modules, we can enable or disable them as we require. \n",
"\n",
"For this purpose, we utilize the `model.set_enabled_adapters` method - it takes an optional `name` and a boolean value for `enabled`. If a name is not passed, it will set enable/disable all available adapters.\n",
"\n",
"**Note**: We recommend training one adapter at a time, disjoint from all other adapters. As such, it simplifies the selection of adapters for each particular domain. To do so - **disable all adapters first, then enable only the newly added adapter**."
],
"metadata": {
"id": "RH6cXPW2ZHdZ"
}
},
{
"cell_type": "code",
"source": [
"model.set_enabled_adapters(enabled=False) # disable all adapters\n",
"model.set_enabled_adapters(name=adapter_name, enabled=True) # enable only the current adapter we want to train"
],
"metadata": {
"id": "ogUfDkjdZKHu"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Training only the adapter(s)\n",
"\n",
"Now that we have enabled just the adapter we wish to adapt onto AN4 dataset, we must freeze all the other parameters of the network and train just the adapters.\n",
"\n",
"We provide the general utility methods for this purpose - `model.freeze()` and `model.unfreeze_enabled_adapters()`. \n",
"\n",
"The second method will look up all the enabled adapters selected in the previous step and enable their gradient calculation so that they can be trained."
],
"metadata": {
"id": "V87SBzdDY1x1"
}
},
{
"cell_type": "code",
"source": [
"model.freeze()\n",
"model.unfreeze_enabled_adapters()"
],
"metadata": {
"id": "RN2YayAoYzaI"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Why are BatchNormalization layers being frozen?\n",
"\n",
"A side-note here regarding BatchNormalization - even when the model is frozen, while no gradient updates will occur to the beta and gamma parameters, **the moving averages of each batch norm layer continue to update**!\n",
"\n",
"Such updates cause a severe issue when we disable all the adapters - while technically, no parameters of the original model were updated since the moving averages of BatchNormalization were updated. You will have degraded performance on the original domain (even with all adapters disabled !).\n",
"\n",
"-----\n",
"\n",
"For this reason, `unfreeze_enabled_adapters()` has an argument `freeze_batchnorm=True` as the default. It will find all the batch normalization layers and disable this flag so that it will the encoder layers remain exactly frozen even during adapter finetuning. This allows the original model performance to be recovered.\n",
"\n"
],
"metadata": {
"id": "5PriDOuwEbmp"
}
},
{
"cell_type": "code",
"source": [
"model.summarize()"
],
"metadata": {
"id": "Lf3pdwQ2Zch5"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Here we see that after the above steps, we will be training just ~ 200,000 parameters out of a 10+ M parameter model."
],
"metadata": {
"id": "JI6C_TYGGgyZ"
}
},
{
"cell_type": "code",
"source": [
"# Prepare NeMo's Experiment manager to handle checkpoint saving and logging for us\n",
"from nemo.utils import exp_manager\n",
"\n",
"# Environment variable generally used for multi-node multi-gpu training.\n",
"# In notebook environments, this flag is unnecessary and can cause logs of multiple training runs to overwrite each other.\n",
"os.environ.pop('NEMO_EXPM_VERSION', None)\n",
"\n",
"exp_config = exp_manager.ExpManagerConfig(\n",
" exp_dir=f'experiments/',\n",
" name=f\"ASR-Adapters\",\n",
" checkpoint_callback_params=exp_manager.CallbackParams(\n",
" monitor=\"val_wer\",\n",
" mode=\"min\",\n",
" always_save_nemo=True,\n",
" save_best_model=True,\n",
" ),\n",
")\n",
"\n",
"exp_config = OmegaConf.structured(exp_config)\n",
"\n",
"logdir = exp_manager.exp_manager(trainer, exp_config)"
],
"metadata": {
"id": "w9ciIw-2bSHq"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Finally, train the adapters\n",
"trainer.fit(model)"
],
"metadata": {
"id": "cY2TJod3ZfyE"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"After training, save the final checkpoint to a nemo file to evaluate. We also save just the adapter module itself, as that is much smaller than the size of the full model."
],
"metadata": {
"id": "A82ylXSZuL1T"
}
},
{
"cell_type": "code",
"source": [
"model.save_to(\"/content/adapted_model.nemo\")"
],
"metadata": {
"id": "7tDdE9lZbvhJ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model.save_adapters('/content/adapter_modules.pt')"
],
"metadata": {
"id": "L9yO-M-oL3Cy"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Evaluate the adapted model\n",
"\n",
"Now that we have finished the adaptation step and saved a trained NeMo file, we can evaluate the accuracy of our adapted model on the test set of AN4."
],
"metadata": {
"id": "Ak9v58RmdNJT"
}
},
{
"cell_type": "markdown",
"source": [
"## Evaluate the adapter-enabled model"
],
"metadata": {
"id": "r-rjNJAvuZxu"
}
},
{
"cell_type": "code",
"source": [
"!python scripts/speech_to_text_eval.py \\\n",
" model_path=\"/content/adapted_model.nemo\" \\\n",
" dataset_manifest=$TEST_MANIFEST \\\n",
" output_filename=\"/content/adapted_predictions.json\" \\\n",
" batch_size=32 \\\n",
" use_cer=False"
],
"metadata": {
"id": "_Ps6_45mdJpM"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"We could significantly improve the accuracy of this model on the AN4 dataset with a very short training schedule with a small number of parameters. \n",
"\n",
"**Note**: Since AN4 is a relatively simple dataset, the gains are very large in this example. We generally observe more modest improvements with such short training schedules on realistic datasets (but gains of this range are easily attainable with more data or precise training schedules to avoid overfitting)."
],
"metadata": {
"id": "MegsAIcQG5MJ"
}
},
{
"cell_type": "markdown",
"source": [
"Let us compare the adapted model's predictions below - "
],
"metadata": {
"id": "T6c_p530wMwG"
}
},
{
"cell_type": "code",
"source": [
"print(\"Original\")\n",
"!head -n 5 /content/unadapted_predictions.json\n",
"print(\"Adapted\")\n",
"!head -n 5 /content/adapted_predictions.json"
],
"metadata": {
"id": "vlK3PdMhtlv1"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Evaluate the adapter-disabled model\n",
"\n",
"Now, let us disable the adapters and recover the original performance of the model. We do this as a sanity test, to check that indeed the \"base\" model is still intact, even if adapter training has occurred."
],
"metadata": {
"id": "CCkH10jqd4q1"
}
},
{
"cell_type": "code",
"source": [
"model.set_enabled_adapters(enabled=False)\n",
"model.save_to(\"/content/adapter_disabled_model.nemo\")"
],
"metadata": {
"id": "1R6wHGgRdRKX"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!python scripts/speech_to_text_eval.py \\\n",
" model_path=\"/content/adapter_disabled_model.nemo\" \\\n",
" dataset_manifest=$TEST_MANIFEST \\\n",
" output_filename=\"/content/adapter_disabled_predictions.json\" \\\n",
" batch_size=32 \\\n",
" use_cer=False"
],
"metadata": {
"id": "IhGLtRwdeGRf"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# [EXTRA] Check that accuracy can be recovered after adaptation\n",
"\n",
"This is a more explicit test than simply checking the WER above - here we do sample by sample check to ensure that predicted text remains the same."
],
"metadata": {
"id": "GGKgsW5gvAuf"
}
},
{
"cell_type": "code",
"source": [
"original_transcripts = read_manifest('/content/unadapted_predictions.json')\n",
"adapter_disabled_transcripts = read_manifest('/content/adapter_disabled_predictions.json')\n",
"\n",
"for orig, new in zip(original_transcripts, adapter_disabled_transcripts):\n",
" match = orig['pred_text'] == new['pred_text']\n",
" if not match:\n",
" print(\"Sample did not match after disabling adapter !\")\n",
" print(\"Original = \", orig['pred_text'])\n",
" print(\"Adapters disabled = \", new['pred_text']) \n",
" print()"
],
"metadata": {
"id": "YFKN7QYuvBzP"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# [EXTRA] Add as many adapters as needed\n",
"\n",
"Now that we have showcased how to utilize adapters for domain adaptation, we can take this further and adapt even more datasets - as many as needed!\n",
"\n",
"There is no implicit restriction on how many adapters can be added, as shown below. Still, we do recommend freezing all adapters and training only one at a time to prevent cross-interaction between adapters."
],
"metadata": {
"id": "0CqpJGR6ecYW"
}
},
{
"cell_type": "code",
"source": [
"model.add_adapter(name=\"AN4-v2\", cfg=adapter_cfg)"
],
"metadata": {
"id": "13vZHFFEeK_g"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model.set_enabled_adapters(enabled=False)\n",
"model.set_enabled_adapters(name='AN4-v2', enabled=True)\n",
"\n",
"model.freeze()\n",
"model.unfreeze_enabled_adapters()\n",
"\n",
"model.summarize()"
],
"metadata": {
"id": "iOrJ72SUelp6"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Further reading\n",
"\n",
"For efficient scripts to add, train, and evaluate adapter augmented models, please refer to the [Adapters example section](https://github.com/NVIDIA/NeMo/tree/main/examples/asr/asr_adapters).\n",
"\n",
"Please follow the following articles that discuss the use of adapters in ASR - \n",
"- [Exploiting Adapters for Cross-lingual Low-resource Speech Recognition](https://arxiv.org/abs/2105.11905)\n",
"- [Efficient Adapter Transfer of Self-Supervised Speech Models for Automatic Speech Recognition](https://arxiv.org/abs/2202.03218)\n"
],
"metadata": {
"id": "EIli6c_OvKDH"
}
}
]
}
|