File size: 47,583 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
{
    "cells": [
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "R12Yn6W1dt9t"
            },
            "outputs": [],
            "source": [
                "\"\"\"\n",
                "You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
                "\n",
                "Instructions for setting up Colab are as follows:\n",
                "1. Open a new Python 3 notebook.\n",
                "2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
                "3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
                "4. Run this cell to set up dependencies.\n",
                "\"\"\"\n",
                "# If you're using Google Colab and not running locally, run this cell.\n",
                "\n",
                "## Install dependencies\n",
                "!pip install wget\n",
                "!apt-get install sox libsndfile1 ffmpeg\n",
                "!pip install text-unidecode\n",
                "\n",
                "# ## Install NeMo\n",
                "BRANCH = 'r1.17.0'\n",
                "!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr]\n",
                "\n",
                "## Install TorchAudio\n",
                "!pip install torchaudio>=0.13.0 -f https://download.pytorch.org/whl/torch_stable.html\n",
                "\n",
                "## Grab the config we'll use in this example\n",
                "!mkdir configs"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "# Introduction\n",
                "\n",
                "This VAD tutorial is based on the MarbleNet model from paper \"[MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection](https://arxiv.org/abs/2010.13886)\", which is an modification and extension of [MatchboxNet](https://arxiv.org/abs/2004.08531). \n",
                "\n",
                "The notebook will follow the steps below:\n",
                "\n",
                " - Dataset preparation: Instruction of downloading datasets. And how to convert it to a format suitable for use with nemo_asr\n",
                " - Audio preprocessing (feature extraction): signal normalization, windowing, (log) spectrogram (or mel scale spectrogram, or MFCC)\n",
                "\n",
                " - Data augmentation using SpecAugment \"[SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779)\" to increase number of data samples.\n",
                " \n",
                " - Develop a small Neural classification model which can be trained efficiently.\n",
                " \n",
                " - Model training on the Google Speech Commands dataset and Freesound dataset in NeMo.\n",
                " \n",
                " - Evaluation of error cases of the model by audibly hearing the samples\n",
                " \n",
                " - Add more evaluation metrics and transfer learning/fine tune\n",
                " "
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "I62_LJzc-p2b"
            },
            "outputs": [],
            "source": [
                "# Some utility imports\n",
                "import os\n",
                "from omegaconf import OmegaConf"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab": {},
                "colab_type": "text",
                "id": "K_M8wpkwd7d7"
            },
            "source": [
                "# Data Preparation\n",
                "\n",
                "## Download the background data\n",
                "We suggest to use the background categories of [freesound](https://freesound.org/) dataset  as our non-speech/background data. \n",
                "We provide scripts for downloading and resampling it. Please have a look at Data Preparation part in NeMo docs. Note that downloading this dataset may takes hours. \n",
                "\n",
                "**NOTE:** Here, this tutorial serves as a demonstration on how to train and evaluate models for vad using NeMo. We avoid using freesound dataset, and use `_background_noise_` category in Google Speech Commands Dataset as non-speech/background data."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Download the speech data\n",
                "   \n",
                "We will use the open source Google Speech Commands Dataset (we will use V2 of the dataset for the tutorial, but require very minor changes to support V1 dataset) as our speech data. Google Speech Commands Dataset V2 will take roughly 6GB disk space. These scripts below will download the dataset and convert it to a format suitable for use with nemo_asr.\n",
                "\n",
                "\n",
                "**NOTE**: You may additionally pass `--test_size` or `--val_size` flag for splitting train val and test data.\n",
                "You may additionally pass `--window_length_in_sec` flag for indicating the segment/window length. Default is 0.63s.\n",
                "\n",
                "**NOTE**: You may additionally pass a `--rebalance_method='fixed|over|under'` at the end of the script to rebalance the class samples in the manifest. \n",
                "* 'fixed': Fixed number of samples for each class. For example, train 500, val 100, and test 200. (Change number in script if you want)\n",
                "* 'over': Oversampling rebalance method\n",
                "* 'under': Undersampling rebalance method\n",
                "\n",
                "**NOTE**: We only take a small subset of speech data for demonstration, if you want to use entire speech data. Don't forget to **delete `--demo`** and change rebalance method/number.  `_background_noise_` category only has **6** audio files. So we would like to generate more based on the audio files to enlarge our background training data. If you want to use your own background noise data, just change the `background_data_root` and **delete `--demo`**\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "tmp = 'src'\n",
                "data_folder = 'data'\n",
                "if not os.path.exists(tmp):\n",
                "    os.makedirs(tmp)\n",
                "if not os.path.exists(data_folder):\n",
                "    os.makedirs(data_folder)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "script = os.path.join(tmp, 'process_vad_data.py')\n",
                "if not os.path.exists(script):\n",
                "    !wget -P $tmp https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/dataset_processing/process_vad_data.py"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "speech_data_root = os.path.join(data_folder, 'google_dataset_v2')\n",
                "background_data_root = os.path.join(data_folder, 'google_dataset_v2/google_speech_recognition_v2/_background_noise_')# your <resampled freesound data directory>\n",
                "out_dir = os.path.join(data_folder, 'manifest')\n",
                "if not os.path.exists(speech_data_root):\n",
                "    os.mkdir(speech_data_root)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "# This may take a few minutes\n",
                "!python $script \\\n",
                "    --out_dir={out_dir} \\\n",
                "    --speech_data_root={speech_data_root} \\\n",
                "    --background_data_root={background_data_root}\\\n",
                "    --log \\\n",
                "    --demo \\\n",
                "    --rebalance_method='fixed' "
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "TTsxp0nZ1zqo"
            },
            "source": [
                "## Preparing the manifest file\n",
                "\n",
                "Manifest files are the data structure used by NeMo to declare a few important details about the data :\n",
                "\n",
                "1) `audio_filepath`: Refers to the path to the raw audio file <br>\n",
                "2) `label`: The class label (speech or background) of this sample <br>\n",
                "3) `duration`: The length of the audio file, in seconds.<br>\n",
                "4) `offset`: The start of the segment, in seconds."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "ytTFGVe0g9wk"
            },
            "outputs": [],
            "source": [
                "# change below if you don't have or don't want to use rebalanced data\n",
                "train_dataset = 'data/manifest/balanced_background_training_manifest.json,data/manifest/balanced_speech_training_manifest.json' \n",
                "val_dataset = 'data/manifest/background_validation_manifest.json,data/manifest/speech_validation_manifest.json' \n",
                "test_dataset = 'data/manifest/balanced_background_testing_manifest.json,data/manifest/balanced_speech_testing_manifest.json' "
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "s0SZy9SEhOBf"
            },
            "source": [
                "## Read a few rows of the manifest file \n",
                "\n",
                "Manifest files are the data structure used by NeMo to declare a few important details about the data :\n",
                "\n",
                "1) `audio_filepath`: Refers to the path to the raw audio file <br>\n",
                "2) `command`: The class label (or speech command) of this sample <br>\n",
                "3) `duration`: The length of the audio file, in seconds."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "sample_test_dataset =  test_dataset.split(',')[0]"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "HYBidCMIhKQV",
                "scrolled": true
            },
            "outputs": [],
            "source": [
                "!head -n 5 {sample_test_dataset}"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "# Training - Preparation\n",
                "\n",
                "We will be training a MarbleNet model from paper \"[MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection](https://arxiv.org/abs/2010.13886)\", evolved from [QuartzNet](https://arxiv.org/pdf/1910.10261.pdf) and [MatchboxNet](https://arxiv.org/abs/2004.08531) model. The benefit of QuartzNet over JASPER models is that they use Separable Convolutions, which greatly reduce the number of parameters required to get good model accuracy.\n",
                "\n",
                "MarbleNet models generally follow the model definition pattern QuartzNet-[BxRXC], where B is the number of blocks, R is the number of convolutional sub-blocks, and C is the number of channels in these blocks. Each sub-block contains a 1-D masked convolution, batch normalization, ReLU, and dropout.\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "ieAPOM9thTN2"
            },
            "outputs": [],
            "source": [
                "# NeMo's \"core\" package\n",
                "import nemo\n",
                "# NeMo's ASR collection - this collections contains complete ASR models and\n",
                "# building blocks (modules) for ASR\n",
                "import nemo.collections.asr as nemo_asr"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "ss9gLcDv30jI"
            },
            "source": [
                "## Model Configuration\n",
                "The MarbleNet Model is defined in a config file which declares multiple important sections.\n",
                "\n",
                "They are:\n",
                "\n",
                "1) `model`: All arguments that will relate to the Model - preprocessors, encoder, decoder, optimizer and schedulers, datasets and any other related information\n",
                "\n",
                "2) `trainer`: Any argument to be passed to PyTorch Lightning"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "MODEL_CONFIG = \"marblenet_3x2x64.yaml\"\n",
                "\n",
                "if not os.path.exists(f\"configs/{MODEL_CONFIG}\"):\n",
                "  !wget -P configs/ \"https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/marblenet/{MODEL_CONFIG}\""
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "yoVAs9h1lfci",
                "scrolled": true
            },
            "outputs": [],
            "source": [
                "# This line will print the entire config of the MarbleNet model\n",
                "config_path = f\"configs/{MODEL_CONFIG}\"\n",
                "config = OmegaConf.load(config_path)\n",
                "config = OmegaConf.to_container(config, resolve=True)\n",
                "config = OmegaConf.create(config)\n",
                "\n",
                "print(OmegaConf.to_yaml(config))"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "m2lJPR0a3qww"
            },
            "outputs": [],
            "source": [
                "# Preserve some useful parameters\n",
                "labels = config.model.labels\n",
                "sample_rate = config.model.sample_rate"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "8_pmjeed78rJ"
            },
            "source": [
                "### Setting up the datasets within the config\n",
                "\n",
                "If you'll notice, there are a few config dictionaries called `train_ds`, `validation_ds` and `test_ds`. These are configurations used to setup the Dataset and DataLoaders of the corresponding config.\n",
                "\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "DIe6Qfs18MiQ"
            },
            "outputs": [],
            "source": [
                "print(OmegaConf.to_yaml(config.model.train_ds))"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "Fb01hl868Uc3"
            },
            "source": [
                "### `???` inside configs\n",
                "\n",
                "You will often notice that some configs have `???` in place of paths. This is used as a placeholder so that the user can change the value at a later time.\n",
                "\n",
                "Let's add the paths to the manifests to the config above."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "m181HXev8T97"
            },
            "outputs": [],
            "source": [
                "config.model.train_ds.manifest_filepath = train_dataset\n",
                "config.model.validation_ds.manifest_filepath = val_dataset\n",
                "config.model.test_ds.manifest_filepath = test_dataset"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "pbXngoCM5IRG"
            },
            "source": [
                "## Building the PyTorch Lightning Trainer\n",
                "\n",
                "NeMo models are primarily PyTorch Lightning modules - and therefore are entirely compatible with the PyTorch Lightning ecosystem!\n",
                "\n",
                "Let's first instantiate a Trainer object!"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "bYtvdBlG5afU"
            },
            "outputs": [],
            "source": [
                "import torch\n",
                "import pytorch_lightning as pl"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "jRN18CdH51nN"
            },
            "outputs": [],
            "source": [
                "print(\"Trainer config - \\n\")\n",
                "print(OmegaConf.to_yaml(config.trainer))"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "gHf6cHvm6H9b"
            },
            "outputs": [],
            "source": [
                "# Let's modify some trainer configs for this demo\n",
                "# Checks if we have GPU available and uses it\n",
                "accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
                "config.trainer.devices = 1\n",
                "config.trainer.accelerator = accelerator\n",
                "\n",
                "# Reduces maximum number of epochs to 5 for quick demonstration\n",
                "config.trainer.max_epochs = 5\n",
                "\n",
                "# Remove distributed training flags\n",
                "config.trainer.strategy = None"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "UB9nr7G56G3L"
            },
            "outputs": [],
            "source": [
                "trainer = pl.Trainer(**config.trainer)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "2wt603Vq6sqX"
            },
            "source": [
                "## Setting up a NeMo Experiment\n",
                "\n",
                "NeMo has an experiment manager that handles logging and checkpointing for us, so let's use it ! "
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "TfWJFg7p6Ezf"
            },
            "outputs": [],
            "source": [
                "from nemo.utils.exp_manager import exp_manager"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "SC-QPoW44-p2"
            },
            "outputs": [],
            "source": [
                "exp_dir = exp_manager(trainer, config.get(\"exp_manager\", None))"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "Yqi6rkNR7Dph"
            },
            "outputs": [],
            "source": [
                "# The exp_dir provides a path to the current experiment for easy access\n",
                "exp_dir = str(exp_dir)\n",
                "exp_dir"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "t0zz-vHH7Uuh"
            },
            "source": [
                "## Building the MarbleNet Model\n",
                "\n",
                "MarbleNet is an ASR model with a classification task - it generates one label for the entire provided audio stream. Therefore we encapsulate it inside the `EncDecClassificationModel` as follows."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "FRMrKhyf5vhy",
                "scrolled": true
            },
            "outputs": [],
            "source": [
                "vad_model = nemo_asr.models.EncDecClassificationModel(cfg=config.model, trainer=trainer)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "jA9UND-Q_oyw"
            },
            "source": [
                "# Training a MarbleNet Model\n",
                "\n",
                "As MarbleNet is inherently a PyTorch Lightning Model, it can easily be trained in a single line - `trainer.fit(model)` !\n",
                "\n",
                "\n",
                "# Training the model\n",
                "\n",
                "Even with such a small model (73k parameters), and just 5 epochs (should take just a few minutes to train), you should be able to get a test set accuracy score around 98.83% (this result is for the [freesound](https://freesound.org/) dataset) with enough training data. \n",
                "\n",
                "**NOTE:** If you follow our tutorial and user the generated background data, you may notice the below results are acceptable, but please remember, this tutorial is only for **demonstration** and the dataset is not good enough. Please change background dataset and train with enough data for improvement!\n",
                "\n",
                "Experiment with increasing the number of epochs or with batch size to see how much you can improve the score! \n",
                "\n",
                "**NOTE:** Noise robustness is quite important for VAD task. Below we list the augmentation we used in this demo. \n",
                "Please refer to [Online_Noise_Augmentation.ipynb](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/asr/Online_Noise_Augmentation.ipynb)  for understanding noise augmentation in NeMo.\n",
                "\n",
                "\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "# Noise augmentation\n",
                "print(OmegaConf.to_yaml(config.model.train_ds.augmentor)) # noise augmentation\n",
                "print(OmegaConf.to_yaml(config.model.spec_augment)) # SpecAug data augmentation"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "If you are interested in  **pretrained** model, please have a look at [Transfer Leaning & Fine-tuning on a new dataset](#Transfer-Leaning-&-Fine-tuning-on-a-new-dataset) and incoming tutorial 07 Offline_and_Online_VAD_Demo\n"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "3ngKcRFqBfIF"
            },
            "source": [
                "### Monitoring training progress\n",
                "\n",
                "Before we begin training, let's first create a Tensorboard visualization to monitor progress\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "Cyfec0PDBsXa"
            },
            "outputs": [],
            "source": [
                "try:\n",
                "    from google import colab\n",
                "    COLAB_ENV = True\n",
                "except (ImportError, ModuleNotFoundError):\n",
                "    COLAB_ENV = False\n",
                "\n",
                "# Load the TensorBoard notebook extension\n",
                "if COLAB_ENV:\n",
                "    %load_ext tensorboard\n",
                "    %tensorboard --logdir {exp_dir}\n",
                "else:\n",
                "    print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "ZApuELDIKQgC"
            },
            "source": [
                "### Training for 5 epochs\n",
                "We see below that the model begins to get modest scores on the validation set after just 5 epochs of training"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "9xiUUJlH5KdD"
            },
            "outputs": [],
            "source": [
                "trainer.fit(vad_model)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "# Fast Training\n",
                "\n",
                "We can dramatically improve the time taken to train this model by using Multi GPU training along with Mixed Precision.\n",
                "\n",
                "```python\n",
                "# Trainer with a distributed backend:\n",
                "trainer = Trainer(devices=2, num_nodes=2, accelerator='gpu', strategy='dp')\n",
                "\n",
                "# Mixed precision:\n",
                "trainer = Trainer(amp_level='O1', precision=16)\n",
                "\n",
                "# Of course, you can combine these flags as well.\n",
                "```"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "Dkds1jSvKgSc"
            },
            "source": [
                "# Evaluation\n",
                "\n",
                "## Evaluation on the Test set\n",
                "\n",
                "Let's compute the final score on the test set via `trainer.test(model)`"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "mULTrhEJ_6wV",
                "scrolled": true
            },
            "outputs": [],
            "source": [
                "trainer.test(vad_model, ckpt_path=None)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "ifDHkunjM8y6"
            },
            "source": [
                "## Evaluation of incorrectly predicted samples\n",
                "\n",
                "Given that we have a trained model, which performs reasonably well, let's try to listen to the samples where the model is least confident in its predictions."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "PcJrZ72sNCkM"
            },
            "source": [
                "### Extract the predictions from the model\n",
                "\n",
                "We want to possess the actual logits of the model instead of just the final evaluation score, so we can define a function to perform the forward step for us without computing the final loss. Instead, we extract the logits per batch of samples provided."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "rvxdviYtOFjK"
            },
            "source": [
                "### Accessing the data loaders\n",
                "\n",
                "We can utilize the `setup_test_data` method in order to instantiate a data loader for the dataset we want to analyze.\n",
                "\n",
                "For convenience, we can access these instantiated data loaders using the following accessors - `vad_model._train_dl`, `vad_model._validation_dl` and `vad_model._test_dl`."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "CB0QZCAmM656"
            },
            "outputs": [],
            "source": [
                "vad_model.setup_test_data(config.model.test_ds)\n",
                "test_dl = vad_model._test_dl"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "rA7gXawcPoip"
            },
            "source": [
                "### Partial Test Step\n",
                "\n",
                "Below we define a utility function to perform most of the test step. For reference, the test step is defined as follows:\n",
                "\n",
                "```python\n",
                "    def test_step(self, batch, batch_idx, dataloader_idx=0):\n",
                "        audio_signal, audio_signal_len, labels, labels_len = batch\n",
                "        logits = self.forward(input_signal=audio_signal, input_signal_length=audio_signal_len)\n",
                "        loss_value = self.loss(logits=logits, labels=labels)\n",
                "        correct_counts, total_counts = self._accuracy(logits=logits, labels=labels)\n",
                "        return {'test_loss': loss_value, 'test_correct_counts': correct_counts, 'test_total_counts': total_counts}\n",
                "```"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "sBsDOm5ROpQI"
            },
            "outputs": [],
            "source": [
                "@torch.no_grad()\n",
                "def extract_logits(model, dataloader):\n",
                "    logits_buffer = []\n",
                "    label_buffer = []\n",
                "\n",
                "    # Follow the above definition of the test_step\n",
                "    for batch in dataloader:\n",
                "        audio_signal, audio_signal_len, labels, labels_len = batch\n",
                "        logits = model(input_signal=audio_signal, input_signal_length=audio_signal_len)\n",
                "\n",
                "        logits_buffer.append(logits)\n",
                "        label_buffer.append(labels)\n",
                "        print(\".\", end='')\n",
                "    print()\n",
                "\n",
                "    print(\"Finished extracting logits !\")\n",
                "    logits = torch.cat(logits_buffer, 0)\n",
                "    labels = torch.cat(label_buffer, 0)\n",
                "    return logits, labels\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "mZSdprUlOuoV"
            },
            "outputs": [],
            "source": [
                "cpu_model = vad_model.cpu()\n",
                "cpu_model.eval()\n",
                "logits, labels = extract_logits(cpu_model, test_dl)\n",
                "print(\"Logits:\", logits.shape, \"Labels :\", labels.shape)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "9Wd0ukgNXRBz",
                "scrolled": true
            },
            "outputs": [],
            "source": [
                "# Compute accuracy - `_accuracy` is a PyTorch Lightning Metric !\n",
                "acc = cpu_model._accuracy(logits=logits, labels=labels)\n",
                "print(f\"Accuracy : {float(acc[0]*100)} %\")"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "NwN9OSqCauSH"
            },
            "source": [
                "### Filtering out incorrect samples\n",
                "Let us now filter out the incorrectly labeled samples from the total set of samples in the test set"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "N1YJvsmcZ0uE"
            },
            "outputs": [],
            "source": [
                "import librosa\n",
                "import json\n",
                "import IPython.display as ipd"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "jZAT9yGAayvR"
            },
            "outputs": [],
            "source": [
                "# First let's create a utility class to remap the integer class labels to actual string label\n",
                "class ReverseMapLabel:\n",
                "    def __init__(self, data_loader):\n",
                "        self.label2id = dict(data_loader.dataset.label2id)\n",
                "        self.id2label = dict(data_loader.dataset.id2label)\n",
                "\n",
                "    def __call__(self, pred_idx, label_idx):\n",
                "        return self.id2label[pred_idx], self.id2label[label_idx]"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "X3GSXvYHa4KJ"
            },
            "outputs": [],
            "source": [
                "# Next, let's get the indices of all the incorrectly labeled samples\n",
                "sample_idx = 0\n",
                "incorrect_preds = []\n",
                "rev_map = ReverseMapLabel(test_dl)\n",
                "\n",
                "# Remember, evaluated_tensor = (loss, logits, labels)\n",
                "probs = torch.softmax(logits, dim=-1)\n",
                "probas, preds = torch.max(probs, dim=-1)\n",
                "\n",
                "total_count = cpu_model._accuracy.total_counts_k[0]\n",
                "incorrect_ids = (preds != labels).nonzero()\n",
                "for idx in incorrect_ids:\n",
                "    proba = float(probas[idx][0])\n",
                "    pred = int(preds[idx][0])\n",
                "    label = int(labels[idx][0])\n",
                "    idx = int(idx[0]) + sample_idx\n",
                "\n",
                "    incorrect_preds.append((idx, *rev_map(pred, label), proba))\n",
                "    \n",
                "\n",
                "print(f\"Num test samples : {total_count.item()}\")\n",
                "print(f\"Num errors : {len(incorrect_preds)}\")\n",
                "\n",
                "# First let's sort by confidence of prediction\n",
                "incorrect_preds = sorted(incorrect_preds, key=lambda x: x[-1], reverse=False)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "0JgGo71gcDtD"
            },
            "source": [
                "### Examine a subset of incorrect samples\n",
                "Let's print out the (test id, predicted label, ground truth label, confidence) tuple of first 20 incorrectly labeled samples"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "x37wNJsNbcw0"
            },
            "outputs": [],
            "source": [
                "for incorrect_sample in incorrect_preds[:20]:\n",
                "    print(str(incorrect_sample))"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "tDnwYsDKcLv9"
            },
            "source": [
                "###  Define a threshold below which we designate a model's prediction as \"low confidence\""
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "dpvzeh4PcGJs"
            },
            "outputs": [],
            "source": [
                "# Filter out how many such samples exist\n",
                "low_confidence_threshold = 0.8\n",
                "count_low_confidence = len(list(filter(lambda x: x[-1] <= low_confidence_threshold, incorrect_preds)))\n",
                "print(f\"Number of low confidence predictions : {count_low_confidence}\")"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "ERXyXvCAcSKR"
            },
            "source": [
                "### Let's hear the samples which the model has least confidence in !"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "kxjNVjX8cPNP"
            },
            "outputs": [],
            "source": [
                "# First let's create a helper function to parse the manifest files\n",
                "def parse_manifest(manifest):\n",
                "    data = []\n",
                "    for line in manifest:\n",
                "        line = json.loads(line)\n",
                "        data.append(line)\n",
                "\n",
                "    return data"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "IWxqw5k-cUVd"
            },
            "outputs": [],
            "source": [
                "# Next, let's create a helper function to actually listen to certain samples\n",
                "def listen_to_file(sample_id, pred=None, label=None, proba=None):\n",
                "    # Load the audio waveform using librosa\n",
                "    filepath = test_samples[sample_id]['audio_filepath']\n",
                "    audio, sample_rate = librosa.load(filepath,\n",
                "                                      offset = test_samples[sample_id]['offset'],\n",
                "                                      duration = test_samples[sample_id]['duration'])\n",
                "\n",
                "\n",
                "    if pred is not None and label is not None and proba is not None:\n",
                "        print(f\"filepath: {filepath}, Sample : {sample_id} Prediction : {pred} Label : {label} Confidence = {proba: 0.4f}\")\n",
                "    else:\n",
                "        \n",
                "        print(f\"Sample : {sample_id}\")\n",
                "\n",
                "    return ipd.Audio(audio, rate=sample_rate)\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "HPj1tFNIcXaU"
            },
            "outputs": [],
            "source": [
                "import json\n",
                "# Now let's load the test manifest into memory\n",
                "all_test_samples = []\n",
                "for _ in test_dataset.split(','):\n",
                "    print(_)\n",
                "    with open(_, 'r') as test_f:\n",
                "        test_samples = test_f.readlines()\n",
                "        \n",
                "        all_test_samples.extend(test_samples)\n",
                "print(len(all_test_samples))\n",
                "test_samples = parse_manifest(all_test_samples)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "Nt7b_uiScZcC"
            },
            "outputs": [],
            "source": [
                "# Finally, let's listen to all the audio samples where the model made a mistake\n",
                "# Note: This list of incorrect samples may be quite large, so you may choose to subsample `incorrect_preds`\n",
                "count = min(count_low_confidence, 20)  # replace this line with just `count_low_confidence` to listen to all samples with low confidence\n",
                "\n",
                "for sample_id, pred, label, proba in incorrect_preds[:count]:\n",
                "    ipd.display(listen_to_file(sample_id, pred=pred, label=label, proba=proba))"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Adding evaluation metrics\n",
                "\n",
                "Here is an example of how to use more metrics (e.g. from torchmetrics) to evaluate your result.\n",
                "\n",
                "**Note:** If you would like to add metrics for training and testing, have a look at \n",
                "```python\n",
                "NeMo/nemo/collections/common/metrics\n",
                "```\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "from torchmetrics import ConfusionMatrix"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": [
                "_, pred = logits.topk(1, dim=1, largest=True, sorted=True)\n",
                "pred = pred.squeeze()\n",
                "metric = ConfusionMatrix(num_classes=2, task='binary')\n",
                "metric(pred, labels)\n",
                "# confusion_matrix(preds=pred, target=labels)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "# Transfer Leaning & Fine-tuning on a new dataset\n",
                "For transfer learning, please refer to [**Transfer learning** part of ASR tutorial](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/asr/ASR_with_NeMo.ipynb)\n",
                "\n",
                "More details on saving and restoring checkpoint, and exporting a model in its entirety, please refer to [**Fine-tuning on a new dataset** & **Advanced Usage parts** of Speech Command tutorial](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/asr/Speech_Commands.ipynb)\n",
                "\n",
                "\n",
                "\n"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "LyIegk2CPNsI"
            },
            "source": [
                "# Inference and more\n",
                "If you are interested in **pretrained** model and **streaming inference**, please have a look at our [VAD inference tutorial](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/asr/Online_Offline_Microphone_VAD_Demo.ipynb) and script [vad_infer.py](https://github.com/NVIDIA/NeMo/blob/stable/examples/asr/speech_classification/vad_infer.py)\n"
            ]
        }
    ],
    "metadata": {
        "accelerator": "GPU",
        "colab": {
            "collapsed_sections": [],
            "name": "Voice_Activity_Detection.ipynb",
            "provenance": [],
            "toc_visible": true
        },
        "kernelspec": {
            "display_name": "Python 3",
            "language": "python",
            "name": "python3"
        },
        "language_info": {
            "codemirror_mode": {
                "name": "ipython",
                "version": 3
            },
            "file_extension": ".py",
            "mimetype": "text/x-python",
            "name": "python",
            "nbconvert_exporter": "python",
            "pygments_lexer": "ipython3",
            "version": "3.7.7"
        },
        "pycharm": {
            "stem_cell": {
                "cell_type": "raw",
                "metadata": {
                    "collapsed": false
                },
                "source": []
            }
        }
    },
    "nbformat": 4,
    "nbformat_minor": 1
}