File size: 26,644 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lJz6FDU1lRzc"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"!pip install matplotlib>=3.3.2\n",
"\n",
"## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
"\n",
"## Grab the config we'll use in this example\n",
"!mkdir configs\n",
"!wget -P configs/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/config.yaml\n",
"\n",
"\"\"\"\n",
"Remember to restart the runtime for the kernel to pick up any upgraded packages (e.g. matplotlib)!\n",
"Alternatively, you can uncomment the exit() below to crash and restart the kernel, in the case\n",
"that you want to use the \"Run All Cells\" (or similar) option.\n",
"\"\"\"\n",
"# exit()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Streaming ASR\n",
"In this tutorial, we will look at one way to use one of NeMo's pretrained Conformer-CTC models for streaming inference. We will first look at some use cases where we may need streaming inference and then we will work towards developing a method for transcribing a long audio file using streaming."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "v1Jk9etFlRzf"
},
"source": [
"# Why Stream?\n",
"Streaming inference may be needed in one of the following scenarios:\n",
"* Real-time or close to real-time inference for live transcriptions\n",
"* Offline transcriptions of very long audio\n",
"\n",
"In this tutorial, we will mainly focus on streaming for handling long form audio and close to real-time inference with CTC based models. For training ASR models we usually use short segments of audio (<20s) that may be smaller chunks of a long audio that is aligned with the transcriptions and segmented into smaller chunks (see [tools/](https://github.com/NVIDIA/NeMo/tree/main/tools) for some great tools to do this). For running inference on long audio files we are restricted by the available GPU memory that dictates the maximum length of audio that can be transcribed in one inference call. We will take a look at one of the ways to overcome this restriction using NeMo's Conformer-CTC ASR model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Conformer-CTC\n",
"Conformer-CTC models distributed with NeMo use a combination of self-attention and convolution modules to achieve the best of the two approaches, the self-attention layers can learn the global interaction while the convolutions efficiently capture the local correlations. Use of self-attention layers comes with a cost of increased memory usage at a quadratic rate with the sequence length. That means that transcribing long audio files with Conformer-CTC models needs streaming inference to break up the audio into smaller chunks. We will develop one method to do such inference through the course of this tutorial."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data\n",
"To demonstrate transcribing a long audio file we will use utterances from the dev-clean set of the [mini Librispeech corpus](https://www.openslr.org/31/). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# If something goes wrong during data processing, un-comment the following line to delete the cached dataset \n",
"# !rm -rf datasets/mini-dev-clean\n",
"!mkdir -p datasets/mini-dev-clean"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python ../../scripts/dataset_processing/get_librispeech_data.py \\\n",
" --data_root \"datasets/mini-dev-clean/\" \\\n",
" --data_sets dev_clean_2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"manifest = \"datasets/mini-dev-clean/dev_clean_2.json\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's create a long audio that is about 15 minutes long by concatenating audio from dev-clean and also create the corresponding concatenated transcript."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"def concat_audio(manifest_file, final_len=3600):\n",
" concat_len = 0\n",
" final_transcript = \"\"\n",
" with open(\"concat_file.txt\", \"w\") as cat_f:\n",
" while concat_len < final_len:\n",
" with open(manifest_file, \"r\") as mfst_f:\n",
" for l in mfst_f:\n",
" row = json.loads(l.strip())\n",
" if concat_len >= final_len:\n",
" break\n",
" cat_f.write(f\"file {row['audio_filepath']}\\n\")\n",
" final_transcript += (\" \" + row['text'])\n",
" concat_len += float(row['duration'])\n",
" return concat_len, final_transcript\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"new_duration, ref_transcript = concat_audio(manifest, 15*60)\n",
"\n",
"concat_audio_path = \"datasets/mini-dev-clean/concatenated_audio.wav\"\n",
"\n",
"!ffmpeg -t {new_duration} -safe 0 -f concat -i concat_file.txt -c copy -t {new_duration} {concat_audio_path} -y\n",
"print(\"Finished concatenating audio file!\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Streaming with CTC based models\n",
"Now let's try to transcribe the long audio file created above using a conformer-large model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import nemo.collections.asr as nemo_asr\n",
"import contextlib\n",
"import gc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"device"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are mainly concerned about decoding on the GPU in this tutorial. CPU decoding may be able to handle longer files but would also not be as fast as GPU decoding. Let's check if we can run transcribe() on the long audio file that we created above."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Clear up memory\n",
"torch.cuda.empty_cache()\n",
"gc.collect()\n",
"model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(\"stt_en_conformer_ctc_large\", map_location=device)\n",
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"# device = 'cpu' # You can transcribe even longer samples on the CPU, though it will take much longer !\n",
"model = model.to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Helper for torch amp autocast\n",
"if torch.cuda.is_available():\n",
" autocast = torch.cuda.amp.autocast\n",
"else:\n",
" @contextlib.contextmanager\n",
" def autocast():\n",
" print(\"AMP was not available, using FP32!\")\n",
" yield"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The call to transcribe() below should fail with a \"CUDA out of memory\" error when run on a GPU with 32 GB memory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with autocast():\n",
" transcript = model.transcribe([concat_audio_path], batch_size=1)[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Clear up memory\n",
"torch.cuda.empty_cache()\n",
"gc.collect()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Buffer mechanism for streaming long audio files\n",
"One way to transcribe long audio with a Conformer-CTC model would be to split the audio into consecutive smaller chunks and running inference on each chunk. Care should be taken to have enough context for audio at either edges for accurate transcription. Let's introduce some terminology here to help us navigate the rest of this tutorial. \n",
"\n",
"* Buffer size is the length of audio on which inference is run\n",
"* Chunk size is the length of new audio that is added to the buffer.\n",
"\n",
"An audio buffer is made up of a chunk of audio with some padded audio from previous chunk. In order to make the best predictions with enough context for the beginning and end portions of the buffer, we only collect tokens for the middle portion of the buffer of length equal to the size of each chunk. \n",
"\n",
"Let's suppose that the maximum length of audio that can be transcribed with conformer-large model is 20s, then we can use 20s as the buffer size and use 15s (for example) as the chunk size, so one hour of audio is broken into 240 chunks of 15s each. Let's take a look at a few audio buffers that may be created for this audio."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# A simple iterator class to return successive chunks of samples\n",
"class AudioChunkIterator():\n",
" def __init__(self, samples, frame_len, sample_rate):\n",
" self._samples = samples\n",
" self._chunk_len = chunk_len_in_secs*sample_rate\n",
" self._start = 0\n",
" self.output=True\n",
" \n",
" def __iter__(self):\n",
" return self\n",
" \n",
" def __next__(self):\n",
" if not self.output:\n",
" raise StopIteration\n",
" last = int(self._start + self._chunk_len)\n",
" if last <= len(self._samples):\n",
" chunk = self._samples[self._start: last]\n",
" self._start = last\n",
" else:\n",
" chunk = np.zeros([int(self._chunk_len)], dtype='float32')\n",
" samp_len = len(self._samples) - self._start\n",
" chunk[0:samp_len] = self._samples[self._start:len(self._samples)]\n",
" self.output = False\n",
" \n",
" return chunk"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# a helper function for extracting samples as a numpy array from the audio file\n",
"import soundfile as sf\n",
"def get_samples(audio_file, target_sr=16000):\n",
" with sf.SoundFile(audio_file, 'r') as f:\n",
" sample_rate = f.samplerate\n",
" samples = f.read()\n",
" if sample_rate != target_sr:\n",
" samples = librosa.core.resample(samples, orig_sr=sample_rate, target_sr=target_sr)\n",
" samples = samples.transpose()\n",
" return samples\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's take a look at each chunk of speech that is used for decoding."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"samples = get_samples(concat_audio_path)\n",
"sample_rate = model.preprocessor._cfg['sample_rate'] \n",
"chunk_len_in_secs = 1 \n",
"chunk_reader = AudioChunkIterator(samples, chunk_len_in_secs, sample_rate)\n",
"count = 0\n",
"for chunk in chunk_reader:\n",
" count +=1\n",
" plt.plot(chunk)\n",
" plt.show()\n",
" if count >= 5:\n",
" break\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's plot the actual buffers at each stage after a new chunk is added to the buffer. Audio buffer can be thought of as a fixed size queue with each incoming chunk added at the end of the buffer and the oldest samples removed from the beginning."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"context_len_in_secs = 1\n",
"\n",
"buffer_len_in_secs = chunk_len_in_secs + 2* context_len_in_secs\n",
"\n",
"buffer_len = sample_rate*buffer_len_in_secs\n",
"sampbuffer = np.zeros([buffer_len], dtype=np.float32)\n",
"\n",
"chunk_reader = AudioChunkIterator(samples, chunk_len_in_secs, sample_rate)\n",
"chunk_len = sample_rate*chunk_len_in_secs\n",
"count = 0\n",
"for chunk in chunk_reader:\n",
" count +=1\n",
" sampbuffer[:-chunk_len] = sampbuffer[chunk_len:]\n",
" sampbuffer[-chunk_len:] = chunk\n",
" plt.plot(sampbuffer)\n",
" plt.show()\n",
" if count >= 5:\n",
" break"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have a method to split the long audio into smaller chunks, we can now work on transcribing the individual buffers and merging the outputs to get the transcription of the whole audio.\n",
"First, we implement some helper functions to help load the buffers into the data layer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.core.classes import IterableDataset\n",
"\n",
"def speech_collate_fn(batch):\n",
" \"\"\"collate batch of audio sig, audio len\n",
" Args:\n",
" batch (FloatTensor, LongTensor): A tuple of tuples of signal, signal lengths.\n",
" This collate func assumes the signals are 1d torch tensors (i.e. mono audio).\n",
" \"\"\"\n",
"\n",
" _, audio_lengths = zip(*batch)\n",
"\n",
" max_audio_len = 0\n",
" has_audio = audio_lengths[0] is not None\n",
" if has_audio:\n",
" max_audio_len = max(audio_lengths).item()\n",
" \n",
" \n",
" audio_signal= []\n",
" for sig, sig_len in batch:\n",
" if has_audio:\n",
" sig_len = sig_len.item()\n",
" if sig_len < max_audio_len:\n",
" pad = (0, max_audio_len - sig_len)\n",
" sig = torch.nn.functional.pad(sig, pad)\n",
" audio_signal.append(sig)\n",
" \n",
" if has_audio:\n",
" audio_signal = torch.stack(audio_signal)\n",
" audio_lengths = torch.stack(audio_lengths)\n",
" else:\n",
" audio_signal, audio_lengths = None, None\n",
"\n",
" return audio_signal, audio_lengths\n",
"\n",
"# simple data layer to pass audio signal\n",
"class AudioBuffersDataLayer(IterableDataset):\n",
" \n",
"\n",
" def __init__(self):\n",
" super().__init__()\n",
"\n",
" \n",
" def __iter__(self):\n",
" return self\n",
" \n",
" def __next__(self):\n",
" if self._buf_count == len(self.signal) :\n",
" raise StopIteration\n",
" self._buf_count +=1\n",
" return torch.as_tensor(self.signal[self._buf_count-1], dtype=torch.float32), \\\n",
" torch.as_tensor(self.signal_shape[0], dtype=torch.int64)\n",
" \n",
" def set_signal(self, signals):\n",
" self.signal = signals\n",
" self.signal_shape = self.signal[0].shape\n",
" self._buf_count = 0\n",
"\n",
" def __len__(self):\n",
" return 1\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next we implement a class that implements transcribing audio buffers and merging the tokens corresponding to a chunk of audio within each buffer. \n",
"\n",
"For each buffer, we pick tokens corresponding to one chunk length of audio. The chunk within each buffer is chosen such that there is equal left and right context available to the audio within the chunk.\n",
"\n",
"For example, if the chunk size is 1s and buffer size is 3s, we collect tokens corresponding to audio starting from 1s to 2s within each buffer. Conformer-CTC models have a model stride of 4, i.e., a token is produced for every 4 feature vectors in the time domain. MelSpectrogram features are generated once every 10 ms, so a token is produced for every 40 ms of audio.\n",
"\n",
"**Note:** The inherent assumption here is that the output tokens from the model are well aligned with corresponding audio segments. This may not always be true for models trained with CTC loss, so this method of streaming inference may not always work with CTC based models. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from torch.utils.data import DataLoader\n",
"import math\n",
"class ChunkBufferDecoder:\n",
"\n",
" def __init__(self,asr_model, stride, chunk_len_in_secs=1, buffer_len_in_secs=3):\n",
" self.asr_model = asr_model\n",
" self.asr_model.eval()\n",
" self.data_layer = AudioBuffersDataLayer()\n",
" self.data_loader = DataLoader(self.data_layer, batch_size=1, collate_fn=speech_collate_fn)\n",
" self.buffers = []\n",
" self.all_preds = []\n",
" self.chunk_len = chunk_len_in_secs\n",
" self.buffer_len = buffer_len_in_secs\n",
" assert(chunk_len_in_secs<=buffer_len_in_secs)\n",
" \n",
" feature_stride = asr_model._cfg.preprocessor['window_stride']\n",
" self.model_stride_in_secs = feature_stride * stride\n",
" self.n_tokens_per_chunk = math.ceil(self.chunk_len / self.model_stride_in_secs)\n",
" self.blank_id = len(asr_model.decoder.vocabulary)\n",
" self.plot=False\n",
" \n",
" @torch.no_grad() \n",
" def transcribe_buffers(self, buffers, merge=True, plot=False):\n",
" self.plot = plot\n",
" self.buffers = buffers\n",
" self.data_layer.set_signal(buffers[:])\n",
" self._get_batch_preds() \n",
" return self.decode_final(merge)\n",
" \n",
" def _get_batch_preds(self):\n",
"\n",
" device = self.asr_model.device\n",
" for batch in iter(self.data_loader):\n",
"\n",
" audio_signal, audio_signal_len = batch\n",
"\n",
" audio_signal, audio_signal_len = audio_signal.to(device), audio_signal_len.to(device)\n",
" log_probs, encoded_len, predictions = self.asr_model(input_signal=audio_signal, input_signal_length=audio_signal_len)\n",
" preds = torch.unbind(predictions)\n",
" for pred in preds:\n",
" self.all_preds.append(pred.cpu().numpy())\n",
" \n",
" def decode_final(self, merge=True, extra=0):\n",
" self.unmerged = []\n",
" self.toks_unmerged = []\n",
" # index for the first token corresponding to a chunk of audio would be len(decoded) - 1 - delay\n",
" delay = math.ceil((self.chunk_len + (self.buffer_len - self.chunk_len) / 2) / self.model_stride_in_secs)\n",
"\n",
" decoded_frames = []\n",
" all_toks = []\n",
" for pred in self.all_preds:\n",
" ids, toks = self._greedy_decoder(pred, self.asr_model.tokenizer)\n",
" decoded_frames.append(ids)\n",
" all_toks.append(toks)\n",
"\n",
" for decoded in decoded_frames:\n",
" self.unmerged += decoded[len(decoded) - 1 - delay:len(decoded) - 1 - delay + self.n_tokens_per_chunk]\n",
" if self.plot:\n",
" for i, tok in enumerate(all_toks):\n",
" plt.plot(self.buffers[i])\n",
" plt.show()\n",
" print(\"\\nGreedy labels collected from this buffer\")\n",
" print(tok[len(tok) - 1 - delay:len(tok) - 1 - delay + self.n_tokens_per_chunk]) \n",
" self.toks_unmerged += tok[len(tok) - 1 - delay:len(tok) - 1 - delay + self.n_tokens_per_chunk]\n",
" print(\"\\nTokens collected from succesive buffers before CTC merge\")\n",
" print(self.toks_unmerged)\n",
"\n",
"\n",
" if not merge:\n",
" return self.unmerged\n",
" return self.greedy_merge(self.unmerged)\n",
" \n",
" \n",
" def _greedy_decoder(self, preds, tokenizer):\n",
" s = []\n",
" ids = []\n",
" for i in range(preds.shape[0]):\n",
" if preds[i] == self.blank_id:\n",
" s.append(\"_\")\n",
" else:\n",
" pred = preds[i]\n",
" s.append(tokenizer.ids_to_tokens([pred.item()])[0])\n",
" ids.append(preds[i])\n",
" return ids, s\n",
" \n",
" def greedy_merge(self, preds):\n",
" decoded_prediction = []\n",
" previous = self.blank_id\n",
" for p in preds:\n",
" if (p != previous or previous == self.blank_id) and p != self.blank_id:\n",
" decoded_prediction.append(p.item())\n",
" previous = p\n",
" hypothesis = self.asr_model.tokenizer.ids_to_text(decoded_prediction)\n",
" return hypothesis\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To see how this chunk based decoder comes together, let's call the decoder with a few buffers we create from our long audio file.\n",
"Some interesting experiments to try would be to see how changing sizes of the chunk and the context affects transcription accuracy. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"chunk_len_in_secs = 4\n",
"context_len_in_secs = 2\n",
"\n",
"buffer_len_in_secs = chunk_len_in_secs + 2* context_len_in_secs\n",
"\n",
"n_buffers = 5\n",
"\n",
"buffer_len = sample_rate*buffer_len_in_secs\n",
"sampbuffer = np.zeros([buffer_len], dtype=np.float32)\n",
"\n",
"chunk_reader = AudioChunkIterator(samples, chunk_len_in_secs, sample_rate)\n",
"chunk_len = sample_rate*chunk_len_in_secs\n",
"count = 0\n",
"buffer_list = []\n",
"for chunk in chunk_reader:\n",
" count +=1\n",
" sampbuffer[:-chunk_len] = sampbuffer[chunk_len:]\n",
" sampbuffer[-chunk_len:] = chunk\n",
" buffer_list.append(np.array(sampbuffer))\n",
" \n",
" if count >= n_buffers:\n",
" break\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"stride = 4 # 8 for Citrinet\n",
"asr_decoder = ChunkBufferDecoder(model, stride=stride, chunk_len_in_secs=chunk_len_in_secs, buffer_len_in_secs=buffer_len_in_secs )\n",
"transcription = asr_decoder.transcribe_buffers(buffer_list, plot=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Final transcription after CTC merge\n",
"print(transcription)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Time to evaluate our streaming inference on the whole long file that we created."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# WER calculation\n",
"from nemo.collections.asr.metrics.wer import word_error_rate\n",
"# Collect all buffers from the audio file\n",
"sampbuffer = np.zeros([buffer_len], dtype=np.float32)\n",
"\n",
"chunk_reader = AudioChunkIterator(samples, chunk_len_in_secs, sample_rate)\n",
"buffer_list = []\n",
"for chunk in chunk_reader:\n",
" sampbuffer[:-chunk_len] = sampbuffer[chunk_len:]\n",
" sampbuffer[-chunk_len:] = chunk\n",
" buffer_list.append(np.array(sampbuffer))\n",
"\n",
"asr_decoder = ChunkBufferDecoder(model, stride=stride, chunk_len_in_secs=chunk_len_in_secs, buffer_len_in_secs=buffer_len_in_secs )\n",
"transcription = asr_decoder.transcribe_buffers(buffer_list, plot=False)\n",
"wer = word_error_rate(hypotheses=[transcription], references=[ref_transcript])\n",
"\n",
"print(f\"WER: {round(wer*100,2)}%\")"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "ASR_with_NeMo.ipynb",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|