File size: 62,676 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "Speech_Commands.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"source": [],
"metadata": {
"collapsed": false
}
}
}
},
"cells": [
{
"cell_type": "code",
"metadata": {
"id": "R12Yn6W1dt9t"
},
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"\n",
"# ## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr]\n",
"\n",
"## Install TorchAudio\n",
"!pip install torchaudio>=0.13.0 -f https://download.pytorch.org/whl/torch_stable.html\n",
"\n",
"## Grab the config we'll use in this example\n",
"!mkdir configs"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "J6ycGIaZfSLE"
},
"source": [
"# Introduction\n",
"\n",
"This Speech Command recognition tutorial is based on the MatchboxNet model from the paper [\"MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition\"](https://arxiv.org/abs/2004.08531). MatchboxNet is a modified form of the QuartzNet architecture from the paper \"[QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel Separable Convolutions](https://arxiv.org/pdf/1910.10261.pdf)\" with a modified decoder head to suit classification tasks.\n",
"\n",
"The notebook will follow the steps below:\n",
"\n",
" - Dataset preparation: Preparing Google Speech Commands dataset\n",
"\n",
" - Audio preprocessing (feature extraction): signal normalization, windowing, (log) spectrogram (or mel scale spectrogram, or MFCC)\n",
"\n",
" - Data augmentation using SpecAugment \"[SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779)\" to increase the number of data samples.\n",
" \n",
" - Develop a small Neural classification model that can be trained efficiently.\n",
" \n",
" - Model training on the Google Speech Commands dataset in NeMo.\n",
" \n",
" - Evaluation of error cases of the model by audibly hearing the samples"
]
},
{
"cell_type": "code",
"metadata": {
"id": "I62_LJzc-p2b"
},
"source": [
"# Some utility imports\n",
"import os\n",
"from omegaconf import OmegaConf"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "K_M8wpkwd7d7"
},
"source": [
"# This is where the Google Speech Commands directory will be placed.\n",
"# Change this if you don't want the data to be extracted in the current directory.\n",
"# Select the version of the dataset required as well (can be 1 or 2)\n",
"DATASET_VER = 1\n",
"data_dir = './google_dataset_v{0}/'.format(DATASET_VER)\n",
"\n",
"if DATASET_VER == 1:\n",
" MODEL_CONFIG = \"matchboxnet_3x1x64_v1.yaml\"\n",
"else:\n",
" MODEL_CONFIG = \"matchboxnet_3x1x64_v2.yaml\"\n",
"\n",
"if not os.path.exists(f\"configs/{MODEL_CONFIG}\"):\n",
" !wget -P configs/ \"https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/matchboxnet/{MODEL_CONFIG}\""
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "tvfwv9Hjf1Uv"
},
"source": [
"# Data Preparation\n",
"\n",
"We will be using the open-source Google Speech Commands Dataset (we will use V1 of the dataset for the tutorial but require minor changes to support the V2 dataset). These scripts below will download the dataset and convert it to a format suitable for use with NeMo."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6VL10OXTf8ts"
},
"source": [
"## Download the dataset\n",
"\n",
"The dataset must be prepared using the scripts provided under the `{NeMo root directory}/scripts` sub-directory. \n",
"\n",
"Run the following command below to download the data preparation script and execute it.\n",
"\n",
"**NOTE**: You should have at least 4GB of disk space available if you’ve used --data_version=1; and at least 6GB if you used --data_version=2. Also, it will take some time to download and process, so go grab a coffee.\n",
"\n",
"**NOTE**: You may additionally pass a `--rebalance` flag at the end of the `process_speech_commands_data.py` script to rebalance the class samples in the manifest."
]
},
{
"cell_type": "code",
"metadata": {
"id": "oqKe6_uLfzKU"
},
"source": [
"if not os.path.exists(\"process_speech_commands_data.py\"):\n",
" !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/dataset_processing/process_speech_commands_data.py"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "TTsxp0nZ1zqo"
},
"source": [
"### Preparing the manifest file\n",
"\n",
"The manifest file is a simple file that has the full path to the audio file, the duration of the audio file, and the label that is assigned to that audio file. \n",
"\n",
"This notebook is only a demonstration, and therefore we will use the `--skip_duration` flag to speed up construction of the manifest file.\n",
"\n",
"**NOTE: When replicating the results of the paper, do not use this flag and prepare the manifest file with correct durations.**"
]
},
{
"cell_type": "code",
"metadata": {
"id": "cWUtDpzKgop9"
},
"source": [
"!mkdir {data_dir}\n",
"!python process_speech_commands_data.py --data_root={data_dir} --data_version={DATASET_VER} --skip_duration --log\n",
"print(\"Dataset ready !\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "eVsPFxJtg30p"
},
"source": [
"## Prepare the path to manifest files"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ytTFGVe0g9wk"
},
"source": [
"dataset_path = 'google_speech_recognition_v{0}'.format(DATASET_VER)\n",
"dataset_basedir = os.path.join(data_dir, dataset_path)\n",
"\n",
"train_dataset = os.path.join(dataset_basedir, 'train_manifest.json')\n",
"val_dataset = os.path.join(dataset_basedir, 'validation_manifest.json')\n",
"test_dataset = os.path.join(dataset_basedir, 'validation_manifest.json')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "s0SZy9SEhOBf"
},
"source": [
"## Read a few rows of the manifest file \n",
"\n",
"Manifest files are the data structure used by NeMo to declare a few important details about the data :\n",
"\n",
"1) `audio_filepath`: Refers to the path to the raw audio file <br>\n",
"2) `command`: The class label (or speech command) of this sample <br>\n",
"3) `duration`: The length of the audio file, in seconds."
]
},
{
"cell_type": "code",
"metadata": {
"id": "HYBidCMIhKQV"
},
"source": [
"!head -n 5 {train_dataset}"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "r-pyUBedh8f4"
},
"source": [
"# Training - Preparation\n",
"\n",
"We will be training a MatchboxNet model from the paper [\"MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition\"](https://arxiv.org/abs/2004.08531). The benefit of MatchboxNet over JASPER models is that they use 1D Time-Channel Separable Convolutions, which greatly reduce the number of parameters required to obtain good model accuracy.\n",
"\n",
"MatchboxNet models generally follow the model definition pattern QuartzNet-[BxRXC], where B is the number of blocks, R is the number of convolutional sub-blocks, and C is the number of channels in these blocks. Each sub-block contains a 1-D masked convolution, batch normalization, ReLU, and dropout.\n",
"\n",
"An image of QuartzNet, the base configuration of MatchboxNet models, is provided below.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "T0sV4riijHJF"
},
"source": [
"<p align=\"center\">\n",
" <img src=\"https://developer.nvidia.com/blog/wp-content/uploads/2020/05/quartznet-model-architecture-1-625x742.png\">\n",
"</p>"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ieAPOM9thTN2"
},
"source": [
"# NeMo's \"core\" package\n",
"import nemo\n",
"# NeMo's ASR collection - this collections contains complete ASR models and\n",
"# building blocks (modules) for ASR\n",
"import nemo.collections.asr as nemo_asr"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ss9gLcDv30jI"
},
"source": [
"## Model Configuration\n",
"The MatchboxNet Model is defined in a config file which declares multiple important sections.\n",
"\n",
"They are:\n",
"\n",
"1) `model`: All arguments that will relate to the Model - preprocessors, encoder, decoder, optimizer and schedulers, datasets and any other related information\n",
"\n",
"2) `trainer`: Any argument to be passed to PyTorch Lightning"
]
},
{
"cell_type": "code",
"metadata": {
"id": "yoVAs9h1lfci"
},
"source": [
"# This line will print the entire config of the MatchboxNet model\n",
"config_path = f\"configs/{MODEL_CONFIG}\"\n",
"config = OmegaConf.load(config_path)\n",
"config = OmegaConf.to_container(config, resolve=True)\n",
"config = OmegaConf.create(config)\n",
"print(OmegaConf.to_yaml(config))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "m2lJPR0a3qww"
},
"source": [
"# Preserve some useful parameters\n",
"labels = config.model.labels\n",
"sample_rate = config.model.sample_rate"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "8_pmjeed78rJ"
},
"source": [
"### Setting up the datasets within the config\n",
"\n",
"If you'll notice, there are a few config dictionaries called `train_ds`, `validation_ds` and `test_ds`. These are configurations used to setup the Dataset and DataLoaders of the corresponding config.\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "DIe6Qfs18MiQ"
},
"source": [
"print(OmegaConf.to_yaml(config.model.train_ds))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Fb01hl868Uc3"
},
"source": [
"### `???` inside configs\n",
"\n",
"You will often notice that some configs have `???` in place of paths. This is used as a placeholder so that the user can change the value at a later time.\n",
"\n",
"Let's add the paths to the manifests to the config above."
]
},
{
"cell_type": "code",
"metadata": {
"id": "m181HXev8T97"
},
"source": [
"config.model.train_ds.manifest_filepath = train_dataset\n",
"config.model.validation_ds.manifest_filepath = val_dataset\n",
"config.model.test_ds.manifest_filepath = test_dataset"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "pbXngoCM5IRG"
},
"source": [
"## Building the PyTorch Lightning Trainer\n",
"\n",
"NeMo models are primarily PyTorch Lightning modules - and therefore are entirely compatible with the PyTorch Lightning ecosystem!\n",
"\n",
"Lets first instantiate a Trainer object!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "bYtvdBlG5afU"
},
"source": [
"import torch\n",
"import pytorch_lightning as pl"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "jRN18CdH51nN"
},
"source": [
"print(\"Trainer config - \\n\")\n",
"print(OmegaConf.to_yaml(config.trainer))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "gHf6cHvm6H9b"
},
"source": [
"# Lets modify some trainer configs for this demo\n",
"# Checks if we have GPU available and uses it\n",
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
"config.trainer.devices = 1\n",
"config.trainer.accelerator = accelerator\n",
"\n",
"# Reduces maximum number of epochs to 5 for quick demonstration\n",
"config.trainer.max_epochs = 5\n",
"\n",
"# Remove distributed training flags\n",
"config.trainer.strategy = None"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "UB9nr7G56G3L"
},
"source": [
"trainer = pl.Trainer(**config.trainer)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "2wt603Vq6sqX"
},
"source": [
"## Setting up a NeMo Experiment\n",
"\n",
"NeMo has an experiment manager that handles logging and checkpointing for us, so let's use it ! "
]
},
{
"cell_type": "code",
"metadata": {
"id": "TfWJFg7p6Ezf"
},
"source": [
"from nemo.utils.exp_manager import exp_manager"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "SC-QPoW44-p2"
},
"source": [
"exp_dir = exp_manager(trainer, config.get(\"exp_manager\", None))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Yqi6rkNR7Dph"
},
"source": [
"# The exp_dir provides a path to the current experiment for easy access\n",
"exp_dir = str(exp_dir)\n",
"exp_dir"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "t0zz-vHH7Uuh"
},
"source": [
"## Building the MatchboxNet Model\n",
"\n",
"MatchboxNet is an ASR model with a classification task - it generates one label for the entire provided audio stream. Therefore we encapsulate it inside the `EncDecClassificationModel` as follows."
]
},
{
"cell_type": "code",
"metadata": {
"id": "FRMrKhyf5vhy"
},
"source": [
"asr_model = nemo_asr.models.EncDecClassificationModel(cfg=config.model, trainer=trainer)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "jA9UND-Q_oyw"
},
"source": [
"# Training a MatchboxNet Model\n",
"\n",
"As MatchboxNet is inherently a PyTorch Lightning Model, it can easily be trained in a single line - `trainer.fit(model)` !"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3ngKcRFqBfIF"
},
"source": [
"### Monitoring training progress\n",
"\n",
"Before we begin training, let's first create a Tensorboard visualization to monitor progress\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "sT3371CbJ8Rz"
},
"source": [
"try:\n",
" from google import colab\n",
" COLAB_ENV = True\n",
"except (ImportError, ModuleNotFoundError):\n",
" COLAB_ENV = False"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Cyfec0PDBsXa"
},
"source": [
"# Load the TensorBoard notebook extension\n",
"if COLAB_ENV:\n",
" %load_ext tensorboard\n",
"else:\n",
" print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "4L5ymu-QBxmz"
},
"source": [
"if COLAB_ENV:\n",
" %tensorboard --logdir {exp_dir}\n",
"else:\n",
" print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZApuELDIKQgC"
},
"source": [
"### Training for 5 epochs\n",
"We see below that the model begins to get modest scores on the validation set after just 5 epochs of training"
]
},
{
"cell_type": "code",
"metadata": {
"id": "9xiUUJlH5KdD"
},
"source": [
"trainer.fit(asr_model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Dkds1jSvKgSc"
},
"source": [
"### Evaluation on the Test set\n",
"\n",
"Lets compute the final score on the test set via `trainer.test(model)`"
]
},
{
"cell_type": "code",
"metadata": {
"id": "mULTrhEJ_6wV"
},
"source": [
"trainer.test(asr_model, ckpt_path=None)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "XQntce8cLiUC"
},
"source": [
"# Fast Training\n",
"\n",
"We can dramatically improve the time taken to train this model by using Multi GPU training along with Mixed Precision.\n",
"\n",
"```python\n",
"# Trainer with a distributed backend:\n",
"trainer = Trainer(devices=2, num_nodes=2, accelerator='gpu', strategy='dp')\n",
"\n",
"# Mixed precision:\n",
"trainer = Trainer(amp_level='O1', precision=16)\n",
"\n",
"# Of course, you can combine these flags as well.\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ifDHkunjM8y6"
},
"source": [
"# Evaluation of incorrectly predicted samples\n",
"\n",
"Given that we have a trained model, which performs reasonably well, let's try to listen to the samples where the model is least confident in its predictions.\n",
"\n",
"For this, we need the support of the librosa library.\n",
"\n",
"**NOTE**: The following code depends on librosa. To install it, run the following code block first."
]
},
{
"cell_type": "code",
"metadata": {
"id": "s3w3LhHcKuD2"
},
"source": [
"!pip install librosa"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "PcJrZ72sNCkM"
},
"source": [
"## Extract the predictions from the model\n",
"\n",
"We want to possess the actual logits of the model instead of just the final evaluation score, so we can define a function to perform the forward step for us without computing the final loss. Instead, we extract the logits per batch of samples provided."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rvxdviYtOFjK"
},
"source": [
"## Accessing the data loaders\n",
"\n",
"We can utilize the `setup_test_data` method in order to instantiate a data loader for the dataset we want to analyze.\n",
"\n",
"For convenience, we can access these instantiated data loaders using the following accessors - `asr_model._train_dl`, `asr_model._validation_dl` and `asr_model._test_dl`."
]
},
{
"cell_type": "code",
"metadata": {
"id": "CB0QZCAmM656"
},
"source": [
"asr_model.setup_test_data(config.model.test_ds)\n",
"test_dl = asr_model._test_dl"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "rA7gXawcPoip"
},
"source": [
"## Partial Test Step\n",
"\n",
"Below we define a utility function to perform most of the test step. For reference, the test step is defined as follows:\n",
"\n",
"```python\n",
" def test_step(self, batch, batch_idx, dataloader_idx=0):\n",
" audio_signal, audio_signal_len, labels, labels_len = batch\n",
" logits = self.forward(input_signal=audio_signal, input_signal_length=audio_signal_len)\n",
" loss_value = self.loss(logits=logits, labels=labels)\n",
" correct_counts, total_counts = self._accuracy(logits=logits, labels=labels)\n",
" return {'test_loss': loss_value, 'test_correct_counts': correct_counts, 'test_total_counts': total_counts}\n",
"```"
]
},
{
"cell_type": "code",
"metadata": {
"id": "sBsDOm5ROpQI"
},
"source": [
"@torch.no_grad()\n",
"def extract_logits(model, dataloader):\n",
" logits_buffer = []\n",
" label_buffer = []\n",
"\n",
" # Follow the above definition of the test_step\n",
" for batch in dataloader:\n",
" audio_signal, audio_signal_len, labels, labels_len = batch\n",
" logits = model(input_signal=audio_signal, input_signal_length=audio_signal_len)\n",
"\n",
" logits_buffer.append(logits)\n",
" label_buffer.append(labels)\n",
" print(\".\", end='')\n",
" print()\n",
" \n",
" print(\"Finished extracting logits !\")\n",
" logits = torch.cat(logits_buffer, 0)\n",
" labels = torch.cat(label_buffer, 0)\n",
" return logits, labels\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "mZSdprUlOuoV"
},
"source": [
"cpu_model = asr_model.cpu()\n",
"cpu_model.eval()\n",
"logits, labels = extract_logits(cpu_model, test_dl)\n",
"print(\"Logits:\", logits.shape, \"Labels :\", labels.shape)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "9Wd0ukgNXRBz"
},
"source": [
"# Compute accuracy - `_accuracy` is a PyTorch Lightning Metric !\n",
"acc = cpu_model._accuracy(logits=logits, labels=labels)\n",
"print(\"Accuracy : \", float(acc[0]*100))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "NwN9OSqCauSH"
},
"source": [
"## Filtering out incorrect samples\n",
"Let us now filter out the incorrectly labeled samples from the total set of samples in the test set"
]
},
{
"cell_type": "code",
"metadata": {
"id": "N1YJvsmcZ0uE"
},
"source": [
"import librosa\n",
"import json\n",
"import IPython.display as ipd"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "jZAT9yGAayvR"
},
"source": [
"# First let's create a utility class to remap the integer class labels to actual string label\n",
"class ReverseMapLabel:\n",
" def __init__(self, data_loader):\n",
" self.label2id = dict(data_loader.dataset.label2id)\n",
" self.id2label = dict(data_loader.dataset.id2label)\n",
"\n",
" def __call__(self, pred_idx, label_idx):\n",
" return self.id2label[pred_idx], self.id2label[label_idx]"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "X3GSXvYHa4KJ"
},
"source": [
"# Next, let's get the indices of all the incorrectly labeled samples\n",
"sample_idx = 0\n",
"incorrect_preds = []\n",
"rev_map = ReverseMapLabel(test_dl)\n",
"\n",
"# Remember, evaluated_tensor = (loss, logits, labels)\n",
"probs = torch.softmax(logits, dim=-1)\n",
"probas, preds = torch.max(probs, dim=-1)\n",
"\n",
"total_count = cpu_model._accuracy.total_counts_k[0]\n",
"incorrect_ids = (preds != labels).nonzero()\n",
"for idx in incorrect_ids:\n",
" proba = float(probas[idx][0])\n",
" pred = int(preds[idx][0])\n",
" label = int(labels[idx][0])\n",
" idx = int(idx[0]) + sample_idx\n",
"\n",
" incorrect_preds.append((idx, *rev_map(pred, label), proba))\n",
"\n",
"print(f\"Num test samples : {total_count.item()}\")\n",
"print(f\"Num errors : {len(incorrect_preds)}\")\n",
"\n",
"# First lets sort by confidence of prediction\n",
"incorrect_preds = sorted(incorrect_preds, key=lambda x: x[-1], reverse=False)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "0JgGo71gcDtD"
},
"source": [
"## Examine a subset of incorrect samples\n",
"Let's print out the (test id, predicted label, ground truth label, confidence) tuple of first 20 incorrectly labeled samples"
]
},
{
"cell_type": "code",
"metadata": {
"id": "x37wNJsNbcw0"
},
"source": [
"for incorrect_sample in incorrect_preds[:20]:\n",
" print(str(incorrect_sample))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "tDnwYsDKcLv9"
},
"source": [
"## Define a threshold below which we designate a model's prediction as \"low confidence\""
]
},
{
"cell_type": "code",
"metadata": {
"id": "dpvzeh4PcGJs"
},
"source": [
"# Filter out how many such samples exist\n",
"low_confidence_threshold = 0.25\n",
"count_low_confidence = len(list(filter(lambda x: x[-1] <= low_confidence_threshold, incorrect_preds)))\n",
"print(f\"Number of low confidence predictions : {count_low_confidence}\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ERXyXvCAcSKR"
},
"source": [
"## Let's hear the samples which the model has least confidence in !"
]
},
{
"cell_type": "code",
"metadata": {
"id": "kxjNVjX8cPNP"
},
"source": [
"# First let's create a helper function to parse the manifest files\n",
"def parse_manifest(manifest):\n",
" data = []\n",
" for line in manifest:\n",
" line = json.loads(line)\n",
" data.append(line)\n",
"\n",
" return data"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "IWxqw5k-cUVd"
},
"source": [
"# Next, let's create a helper function to actually listen to certain samples\n",
"def listen_to_file(sample_id, pred=None, label=None, proba=None):\n",
" # Load the audio waveform using librosa\n",
" filepath = test_samples[sample_id]['audio_filepath']\n",
" audio, sample_rate = librosa.load(filepath)\n",
"\n",
" if pred is not None and label is not None and proba is not None:\n",
" print(f\"Sample : {sample_id} Prediction : {pred} Label : {label} Confidence = {proba: 0.4f}\")\n",
" else:\n",
" print(f\"Sample : {sample_id}\")\n",
"\n",
" return ipd.Audio(audio, rate=sample_rate)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "HPj1tFNIcXaU"
},
"source": [
"# Now let's load the test manifest into memory\n",
"test_samples = []\n",
"with open(test_dataset, 'r') as test_f:\n",
" test_samples = test_f.readlines()\n",
"\n",
"test_samples = parse_manifest(test_samples)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Nt7b_uiScZcC"
},
"source": [
"# Finally, let's listen to all the audio samples where the model made a mistake\n",
"# Note: This list of incorrect samples may be quite large, so you may choose to subsample `incorrect_preds`\n",
"count = min(count_low_confidence, 20) # replace this line with just `count_low_confidence` to listen to all samples with low confidence\n",
"\n",
"for sample_id, pred, label, proba in incorrect_preds[:count]:\n",
" ipd.display(listen_to_file(sample_id, pred=pred, label=label, proba=proba))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "gxLGGDvHW2kV"
},
"source": [
"# Fine-tuning on a new dataset\n",
"\n",
"We currently trained our dataset on all 30/35 classes of the Google Speech Commands dataset (v1/v2).\n",
"\n",
"We will now show an example of fine-tuning a trained model on a subset of the classes, as a demonstration of fine-tuning.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mZAPGTzeXnuQ"
},
"source": [
"## Preparing the data-subsets\n",
"\n",
"Let's select 2 of the classes, `yes` and `no` and prepare our manifests with this dataset."
]
},
{
"cell_type": "code",
"metadata": {
"id": "G1RI4GBNfjUW"
},
"source": [
"import json"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "L3cFvN5vcbjb"
},
"source": [
"def extract_subset_from_manifest(name: str, manifest_path: str, labels: list):\n",
" manifest_dir = os.path.split(manifest_path)[0]\n",
" labels = set(labels)\n",
" manifest_values = []\n",
"\n",
" print(f\"Parsing manifest: {manifest_path}\")\n",
" with open(manifest_path, 'r') as f:\n",
" for line in f:\n",
" val = json.loads(line)\n",
"\n",
" if val['command'] in labels:\n",
" manifest_values.append(val)\n",
"\n",
" print(f\"Number of files extracted from dataset: {len(manifest_values)}\")\n",
"\n",
" outpath = os.path.join(manifest_dir, name)\n",
" with open(outpath, 'w') as f:\n",
" for val in manifest_values:\n",
" json.dump(val, f)\n",
" f.write(\"\\n\")\n",
" f.flush()\n",
"\n",
" print(\"Manifest subset written to path :\", outpath)\n",
" print()\n",
"\n",
" return outpath"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "fXQ0N1evfqZ8"
},
"source": [
"labels = [\"yes\", \"no\"]\n",
"\n",
"train_subdataset = extract_subset_from_manifest(\"train_subset.json\", train_dataset, labels)\n",
"val_subdataset = extract_subset_from_manifest(\"val_subset.json\", val_dataset, labels)\n",
"test_subdataset = extract_subset_from_manifest(\"test_subset.json\", test_dataset, labels)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "IO5pVNyKimiE"
},
"source": [
"## Saving/Restoring a checkpoint\n",
"\n",
"There are multiple ways to save and load models in NeMo. Since all NeMo models are inherently Lightning Modules, we can use the standard way that PyTorch Lightning saves and restores models.\n",
"\n",
"NeMo also provides a more advanced model save/restore format, which encapsulates all the parts of the model that are required to restore that model for immediate use.\n",
"\n",
"In this example, we will explore both ways of saving and restoring models, but we will focus on the PyTorch Lightning method."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lMKvrT88jZwC"
},
"source": [
"### Saving and Restoring via PyTorch Lightning Checkpoints\n",
"\n",
"When using NeMo for training, it is advisable to utilize the `exp_manager` framework. It is tasked with handling checkpointing and logging (Tensorboard as well as WandB optionally!), as well as dealing with multi-node and multi-GPU logging.\n",
"\n",
"Since we utilized the `exp_manager` framework above, we have access to the directory where the checkpoints exist. \n",
"\n",
"`exp_manager` with the default settings will save multiple checkpoints for us - \n",
"\n",
"1) A few checkpoints from certain steps of training. They will have `--val_loss=` tags\n",
"\n",
"2) A checkpoint at the last epoch of training denotes by `-last`.\n",
"\n",
"3) If the model finishes training, it will also have a `--end` checkpoint."
]
},
{
"cell_type": "code",
"metadata": {
"id": "TcHTw5ErmQRi"
},
"source": [
"import glob"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "5h8zMJHngUrV"
},
"source": [
"print(exp_dir)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "F9K_Ct_hl8oU"
},
"source": [
"# Let's list all the checkpoints we have\n",
"checkpoint_dir = os.path.join(exp_dir, 'checkpoints')\n",
"checkpoint_paths = list(glob.glob(os.path.join(checkpoint_dir, \"*.ckpt\")))\n",
"checkpoint_paths"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "67fbB61umfb4"
},
"source": [
"# We want the checkpoint saved after the final step of training\n",
"final_checkpoint = list(filter(lambda x: \"-last.ckpt\" in x, checkpoint_paths))[0]\n",
"print(final_checkpoint)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZADUzv02nknZ"
},
"source": [
"### Restoring from a PyTorch Lightning checkpoint\n",
"\n",
"To restore a model using the `LightningModule.load_from_checkpoint()` class method."
]
},
{
"cell_type": "code",
"metadata": {
"id": "ywd9Qj4Xm3VC"
},
"source": [
"restored_model = nemo_asr.models.EncDecClassificationModel.load_from_checkpoint(final_checkpoint)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "0f4GQa8vB1BB"
},
"source": [
"## Prepare the model for fine-tuning\n",
"\n",
"Remember, the original model was trained for a 30/35 way classification task. Now we require only a subset of these models, so we need to modify the decoder head to support fewer classes.\n",
"\n",
"We can do this easily with the convenient function `EncDecClassificationModel.change_labels(new_label_list)`.\n",
"\n",
"By performing this step, we discard the old decoder head, but still, preserve the encoder!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "iMCMds7pB16U"
},
"source": [
"restored_model.change_labels(labels)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "rrspQ2QFtbCK"
},
"source": [
"### Prepare the data loaders\n",
"\n",
"The restored model, upon restoration, will not attempt to set up any data loaders. \n",
"\n",
"This is so that we can manually set up any datasets we want - train and val to finetune the model, test in order to just evaluate, or all three to do both!\n",
"\n",
"The entire config that we used before can still be accessed via `ModelPT.cfg`, so we will use it in order to set up our data loaders. This also gives us the opportunity to set any additional parameters we wish to setup!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "9JxhiZN5ulUl"
},
"source": [
"import copy"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "qzHfTOkPowJo"
},
"source": [
"train_subdataset_cfg = copy.deepcopy(restored_model.cfg.train_ds)\n",
"val_subdataset_cfg = copy.deepcopy(restored_model.cfg.validation_ds)\n",
"test_subdataset_cfg = copy.deepcopy(restored_model.cfg.test_ds)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "it9-vFX6vHUl"
},
"source": [
"# Set the paths to the subset of the dataset\n",
"train_subdataset_cfg.manifest_filepath = train_subdataset\n",
"val_subdataset_cfg.manifest_filepath = val_subdataset\n",
"test_subdataset_cfg.manifest_filepath = test_subdataset"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "1qzWY8QDvgfc"
},
"source": [
"# Setup the data loader for the restored model\n",
"restored_model.setup_training_data(train_subdataset_cfg)\n",
"restored_model.setup_multiple_validation_data(val_subdataset_cfg)\n",
"restored_model.setup_multiple_test_data(test_subdataset_cfg)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "y8GZ5a5rC0gY"
},
"source": [
"# Check data loaders are correct\n",
"print(\"Train dataset labels :\", restored_model._train_dl.dataset.labels)\n",
"print(\"Val dataset labels :\", restored_model._validation_dl.dataset.labels)\n",
"print(\"Test dataset labels :\", restored_model._test_dl.dataset.labels)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "76yDcWZ9zl2G"
},
"source": [
"## Setting up a new Trainer and Experiment Manager\n",
"\n",
"A restored model has a utility method to attach the Trainer object to it, which is necessary in order to correctly set up the optimizer and scheduler!\n",
"\n",
"**Note**: The restored model does not contain the trainer config with it. It is necessary to create a new Trainer object suitable for the environment where the model is being trained. The template can be replicated from any of the training scripts.\n",
"\n",
"Here, since we already had the previous config object that prepared the trainer, we could have used it, but for demonstration, we will set up the trainer config manually."
]
},
{
"cell_type": "code",
"metadata": {
"id": "swTe3WvBzkBJ"
},
"source": [
"# Setup the new trainer object\n",
"# Let's modify some trainer configs for this demo\n",
"# Checks if we have GPU available and uses it\n",
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
"\n",
"trainer_config = OmegaConf.create(dict(\n",
" devices=1,\n",
" accelerator=accelerator,\n",
" max_epochs=5,\n",
" max_steps=-1, # computed at runtime if not set\n",
" num_nodes=1,\n",
" accumulate_grad_batches=1,\n",
" enable_checkpointing=False, # Provided by exp_manager\n",
" logger=False, # Provided by exp_manager\n",
" log_every_n_steps=1, # Interval of logging.\n",
" val_check_interval=1.0, # Set to 0.25 to check 4 times per epoch, or an int for number of iterations\n",
"))\n",
"print(OmegaConf.to_yaml(trainer_config))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Nd_ej4bI3TIy"
},
"source": [
"trainer_finetune = pl.Trainer(**trainer_config)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "WtGu5q5T32XA"
},
"source": [
"### Setting the trainer to the restored model\n",
"\n",
"All NeMo models provide a convenience method `set_trainer()` in order to setup the trainer after restoration"
]
},
{
"cell_type": "code",
"metadata": {
"id": "BTozhedA3zpM"
},
"source": [
"restored_model.set_trainer(trainer_finetune)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "XojTpEiI3TQa"
},
"source": [
"exp_dir_finetune = exp_manager(trainer_finetune, config.get(\"exp_manager\", None))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "x_LSbmCQ3TUf"
},
"source": [
"exp_dir_finetune = str(exp_dir_finetune)\n",
"exp_dir_finetune"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "QT_mWWnSxPLv"
},
"source": [
"## Setup optimizer + scheduler\n",
"\n",
"For a fine-tuning experiment, let's set up the optimizer and scheduler!\n",
"\n",
"We will use a much lower learning rate than before, and also swap out the scheduler from PolyHoldDecay to CosineDecay."
]
},
{
"cell_type": "code",
"metadata": {
"id": "TugHsePsxA5Q"
},
"source": [
"optim_sched_cfg = copy.deepcopy(restored_model.cfg.optim)\n",
"# Struct mode prevents us from popping off elements from the config, so let's disable it\n",
"OmegaConf.set_struct(optim_sched_cfg, False)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "pZSo0sWPxwiG"
},
"source": [
"# Lets change the maximum learning rate to previous minimum learning rate\n",
"optim_sched_cfg.lr = 0.001\n",
"\n",
"# Lets change the scheduler\n",
"optim_sched_cfg.sched.name = \"CosineAnnealing\"\n",
"\n",
"# \"power\" isnt applicable to CosineAnnealing so let's remove it\n",
"optim_sched_cfg.sched.pop('power')\n",
"\n",
"# \"hold_ratio\" isnt applicable to CosineAnnealing, so let's remove it\n",
"optim_sched_cfg.sched.pop('hold_ratio')\n",
"\n",
"# Set \"min_lr\" to lower value\n",
"optim_sched_cfg.sched.min_lr = 1e-4\n",
"\n",
"print(OmegaConf.to_yaml(optim_sched_cfg))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "FqqyFF3Ey5If"
},
"source": [
"# Now lets update the optimizer settings\n",
"restored_model.setup_optimization(optim_sched_cfg)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "mdivgIPUzgP_"
},
"source": [
"# We can also just directly replace the config inplace if we choose to\n",
"restored_model.cfg.optim = optim_sched_cfg"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "3-lRyz2_Eyrl"
},
"source": [
"## Fine-tune training step\n",
"\n",
"We fine-tune on the subset classification problem. Note, the model was originally trained on these classes (the subset defined here has already been trained on above).\n",
"\n",
"When fine-tuning on a truly new dataset, we will not see such a dramatic improvement in performance. However, it should still converge a little faster than if it was trained from scratch."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nq-iHIgx6OId"
},
"source": [
"### Monitor training progress via Tensorboard\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "PIacDWcD5vCR"
},
"source": [
"if COLAB_ENV:\n",
" %tensorboard --logdir {exp_dir_finetune}\n",
"else:\n",
" print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "r5_z1eW76fip"
},
"source": [
"### Fine-tuning for 5 epochs"
]
},
{
"cell_type": "code",
"metadata": {
"id": "WH8rN6dA6V9S"
},
"source": [
"trainer_finetune.fit(restored_model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "lgV0s8auJpxV"
},
"source": [
"### Evaluation on the Test set\n",
"\n",
"Let's compute the final score on the test set via `trainer.test(model)`"
]
},
{
"cell_type": "code",
"metadata": {
"id": "szpLp6XTDPaK"
},
"source": [
"trainer_finetune.test(restored_model, ckpt_path=None)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "uNBAaf1FKcAZ"
},
"source": [
"## Advanced Usage: Exporting a model in its entirety\n",
"\n",
"While most models can be easily serialized via the Experiment Manager as a PyTorch Lightning checkpoint, there are certain models where this is insufficient. \n",
"\n",
"Consider the case where a Model contains artifacts such as tokenizers or other intermediate file objects that cannot be so easily serialized into a checkpoint.\n",
"\n",
"For such cases, NeMo offers two utility functions that enable serialization of a Model + artifacts - `save_to` and `restore_from`.\n",
"\n",
"Further documentation regarding these methods can be obtained from the documentation pages on NeMo."
]
},
{
"cell_type": "code",
"metadata": {
"id": "Dov9g2j8Lyjs"
},
"source": [
"import tarfile"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "WNixPPFNJyNc"
},
"source": [
"# Save a model as a tarfile\n",
"restored_model.save_to(os.path.join(exp_dir_finetune, \"model.nemo\"))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "B2RHYNjjLrcW"
},
"source": [
"# The above object is just a tarfile which can store additional artifacts.\n",
"with tarfile.open(os.path.join(exp_dir_finetune, 'model.nemo')) as blob:\n",
" for item in blob:\n",
" print(item)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "fRo04x3TLxdu"
},
"source": [
"# Restore a model from a tarfile\n",
"restored_model_2 = nemo_asr.models.EncDecClassificationModel.restore_from(os.path.join(exp_dir_finetune, \"model.nemo\"))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "LyIegk2CPNsI"
},
"source": [
"## Conclusion\n",
"Once the model has been restored, either via a PyTorch Lightning checkpoint or via the `restore_from` methods, one can finetune by following the above general steps."
]
}
]
}
|