File size: 27,544 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lJz6FDU1lRzc"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"!pip install matplotlib>=3.3.2\n",
"\n",
"## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
"\n",
"\"\"\"\n",
"Remember to restart the runtime for the kernel to pick up any upgraded packages (e.g. matplotlib)!\n",
"Alternatively, you can uncomment the exit() below to crash and restart the kernel, in the case\n",
"that you want to use the \"Run All Cells\" (or similar) option.\n",
"\"\"\"\n",
"# exit()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FGIVHjS1YEPw"
},
"source": [
"# Self-Supervised pre-training for ASR\n",
"\n",
"This notebook is a basic tutorial for pre-training a model using the self-supervised approach. With this approach, we use a training objective that does not require our dataset to be labeled, which significantly reduces the difficulty of collecting data for pre-training the model. After pre-training our encoder in this way, we can use it in a CTC or RNNT ASR model.\n",
"\n",
"The approach we will use for pre-training our models is represented in the following diagram:\n",
"\n",
" \n",
"\n",
"We first mask parts of our input using SpecAugment. The model is then trained to solve a contrastive task of distinguishing the latent representation of the masked time steps from several sampled distractors. Since our encoders also contain stride blocks which reduce the length of the inputs, in order to obtain target representations we combine several consecutive time steps. They are then passed through a quantizer, which has been found to help with contrastive pre-training."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "i5XZWBnTf1pT"
},
"source": [
"# Preparing our data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "38aYTCTIlRzh"
},
"source": [
"## Downloading dataset\n",
"\n",
"In order to demonstrate how to pre-train the model, we will use the AN4 dataset. Note: this is dataset is much smaller than one that we would typically want to use for self-supervised training, however it will suffice for this tutorial. This dataset also contains transcriptions, but they will be ignored for self-supervised pre-training.\n",
"\n",
"Before we get started, let's download and prepare the dataset. The utterances are available as `.sph` files, so we will need to convert them to `.wav` for later processing. If you are not using Google Colab, please make sure you have [Sox](http://sox.sourceforge.net/) installed for this step--see the \"Downloads\" section of the linked Sox homepage. (If you are using Google Colab, Sox should have already been installed in the setup cell at the beginning.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gAhsmi6HlRzh"
},
"outputs": [],
"source": [
"# This is where the an4/ directory will be placed.\n",
"# Change this if you don't want the data to be extracted in the current directory.\n",
"data_dir = '.'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"id": "Yb4fuUvWlRzk",
"scrolled": true
},
"outputs": [],
"source": [
"import glob\n",
"import os\n",
"import subprocess\n",
"import tarfile\n",
"import wget\n",
"\n",
"# Download the dataset. This will take a few moments...\n",
"print(\"******\")\n",
"if not os.path.exists(data_dir + '/an4_sphere.tar.gz'):\n",
" an4_url = 'https://dldata-public.s3.us-east-2.amazonaws.com/an4_sphere.tar.gz'\n",
" an4_path = wget.download(an4_url, data_dir)\n",
" print(f\"Dataset downloaded at: {an4_path}\")\n",
"else:\n",
" print(\"Tarfile already exists.\")\n",
" an4_path = data_dir + '/an4_sphere.tar.gz'\n",
"\n",
"if not os.path.exists(data_dir + '/an4/'):\n",
" # Untar and convert .sph to .wav (using sox)\n",
" tar = tarfile.open(an4_path)\n",
" tar.extractall(path=data_dir)\n",
"\n",
" print(\"Converting .sph to .wav...\")\n",
" sph_list = glob.glob(data_dir + '/an4/**/*.sph', recursive=True)\n",
" for sph_path in sph_list:\n",
" wav_path = sph_path[:-4] + '.wav'\n",
" cmd = [\"sox\", sph_path, wav_path]\n",
" subprocess.run(cmd)\n",
"print(\"Finished conversion.\\n******\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "m_LFeM0elRzm"
},
"source": [
"You should now have a folder called `an4` that contains `etc/an4_train.transcription`, `etc/an4_test.transcription`, audio files in `wav/an4_clstk` and `wav/an4test_clstk`, along with some other files we will not need.\n",
"\n",
"Now we can load and take a look at the data. As an example, file `cen2-mgah-b.wav` is a 2.6 second-long audio recording of a man saying the letters \"G L E N N\" one-by-one. To confirm this, we can listen to the file:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_M_bSs3MjQlz"
},
"outputs": [],
"source": [
"import librosa\n",
"import IPython.display as ipd\n",
"\n",
"# Load and listen to the audio file\n",
"example_file = data_dir + '/an4/wav/an4_clstk/mgah/cen2-mgah-b.wav'\n",
"audio, sample_rate = librosa.load(example_file)\n",
"\n",
"ipd.Audio(example_file, rate=sample_rate)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RdNyw1b_zgtm"
},
"source": [
"## Creating Data Manifests\n",
"\n",
"The first thing we need to do now is to create manifests for our training and evaluation data, which will contain the metadata of our audio files. NeMo data sets take in a standardized manifest format where each line corresponds to one sample of audio, such that the number of lines in a manifest is equal to the number of samples that are represented by that manifest. \n",
"\n",
"\n",
"A line must contain the path to an audio file, and the duration of the audio sample. For labeled datasets it will also contain the corresponding transcript (or path to a transcript file). Even though for self-supervised pre-training the transcript is unnecessary, we will still add it to our manifest, since we will also be using this dataset to demonstrate fine-tuning later on.\n",
"\n",
"Here's an example of what one line in a NeMo-compatible manifest might look like:\n",
"```\n",
"{\"audio_filepath\": \"path/to/audio.wav\", \"duration\": 3.45, \"text\": \"this is a nemo tutorial\"}\n",
"```\n",
"\n",
"We can build our training and evaluation manifests using `an4/etc/an4_train.transcription` and `an4/etc/an4_test.transcription`, which have lines containing transcripts and their corresponding audio file IDs:\n",
"```\n",
"...\n",
"<s> P I T T S B U R G H </s> (cen5-fash-b)\n",
"<s> TWO SIX EIGHT FOUR FOUR ONE EIGHT </s> (cen7-fash-b)\n",
"...\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lVB1sG1GlRzz"
},
"outputs": [],
"source": [
"# --- Building Manifest Files --- #\n",
"import json\n",
"\n",
"# Function to build a manifest\n",
"def build_manifest(transcripts_path, manifest_path, wav_path):\n",
" with open(transcripts_path, 'r') as fin:\n",
" with open(manifest_path, 'w') as fout:\n",
" for line in fin:\n",
" # Lines look like this:\n",
" # <s> transcript </s> (fileID)\n",
" transcript = line[: line.find('(')-1].lower()\n",
" transcript = transcript.replace('<s>', '').replace('</s>', '')\n",
" transcript = transcript.strip()\n",
"\n",
" file_id = line[line.find('(')+1 : -2] # e.g. \"cen4-fash-b\"\n",
" audio_path = os.path.join(\n",
" data_dir, wav_path,\n",
" file_id[file_id.find('-')+1 : file_id.rfind('-')],\n",
" file_id + '.wav')\n",
"\n",
" duration = librosa.core.get_duration(filename=audio_path)\n",
"\n",
" # Write the metadata to the manifest\n",
" metadata = {\n",
" \"audio_filepath\": audio_path,\n",
" \"duration\": duration,\n",
" \"text\": transcript\n",
" }\n",
" json.dump(metadata, fout)\n",
" fout.write('\\n')\n",
" \n",
"# Building Manifests\n",
"print(\"******\")\n",
"train_transcripts = data_dir + '/an4/etc/an4_train.transcription'\n",
"train_manifest = data_dir + '/an4/train_manifest.json'\n",
"if not os.path.isfile(train_manifest):\n",
" build_manifest(train_transcripts, train_manifest, 'an4/wav/an4_clstk')\n",
" print(\"Training manifest created.\")\n",
"\n",
"test_transcripts = data_dir + '/an4/etc/an4_test.transcription'\n",
"test_manifest = data_dir + '/an4/test_manifest.json'\n",
"if not os.path.isfile(test_manifest):\n",
" build_manifest(test_transcripts, test_manifest, 'an4/wav/an4test_clstk')\n",
" print(\"Test manifest created.\")\n",
"print(\"***Done***\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FLr1aJ-lf4_7"
},
"source": [
"# Self-supervised pre-training"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sT_uewIDk8oA"
},
"source": [
"## Setting up the config\n",
"\n",
"First, let's download the default config for ssl pre-training of Citrinet-1024, and the corresponding supervised training config, which we will use for fine-tuning later."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "978wWK7AKIvU"
},
"outputs": [],
"source": [
"## Grab the configs we'll use in this example\n",
"!mkdir configs\n",
"!wget -P configs/ https://raw.githubusercontent.com/NVIDIA/NeMo/main/examples/asr/conf/ssl/citrinet/citrinet_ssl_1024.yaml\n",
"!wget -P configs/ https://raw.githubusercontent.com/NVIDIA/NeMo/main/examples/asr/conf/citrinet/citrinet_1024.yaml\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RLzjCgmHuJ_j"
},
"source": [
"Since this config is for a very large model, we will modify it to make a much smaller version for the purpose of this tutorial by reducing the number of channels and the number of sub-blocks in each block."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Vmw9WbTPKHHA"
},
"outputs": [],
"source": [
"from omegaconf import OmegaConf\n",
"import torch\n",
"\n",
"config_path = data_dir + '/configs/citrinet_ssl_1024.yaml'\n",
"\n",
"cfg = OmegaConf.load(config_path)\n",
"\n",
"cfg.model.model_defaults.filters = 256\n",
"cfg.model.model_defaults.repeat = 1\n",
"cfg.model.model_defaults.enc_final = 256\n",
"\n",
"cfg.model.train_ds.manifest_filepath = train_manifest\n",
"cfg.model.train_ds.batch_size = 16\n",
"\n",
"cfg.model.validation_ds.manifest_filepath = test_manifest\n",
"cfg.model.validation_ds.batch_size = 16\n",
"\n",
"if torch.cuda.is_available():\n",
" cfg.trainer.accelerator = 'gpu'\n",
" cfg.trainer.strategy = 'dp'\n",
" cfg.trainer.gpus = 1\n",
"else:\n",
" cfg.trainer.accelerator = 'cpu'\n",
" cfg.trainer.strategy = None\n",
" cfg.trainer.gpus = 0\n",
"\n",
"cfg.exp_manager.exp_dir = data_dir + \"/content/exp\"\n",
"cfg.exp_manager.name = \"pre_trained\"\n",
"cfg.exp_manager.use_datetime_version = False\n",
"cfg.exp_manager.create_tensorboard_logger = False\n",
"cfg.exp_manager.resume_if_exists = True\n",
"cfg.exp_manager.resume_ignore_no_checkpoint = True\n",
"cfg.exp_manager.checkpoint_callback_params.save_best_model = True\n",
"\n",
"cfg.trainer.check_val_every_n_epoch = 1\n",
"\n",
"cfg.model.optim.sched.name = \"CosineAnnealing\"\n",
"cfg.model.optim.sched.warmup_steps = 1000\n",
"cfg.model.optim.sched.max_steps = 5000\n",
"#in practice you will usually want a much larger amount of pre-training steps\n",
"cfg.model.optim.sched.min_lr = 0\n",
"cfg.model.optim.lr = 0.015\n",
"cfg.model.optim.weight_decay = 0\n",
"del cfg.model.optim.sched.d_model\n",
"\n",
"cfg.trainer.max_steps = cfg.model.optim.sched.max_steps\n",
"\n",
"cfg.model.spec_augment.patch_size = 16\n",
"cfg.model.spec_augment.mask_patches = 0.5\n",
"\n",
"cfg.model.train_ds.min_duration = 3.2\n",
"cfg.model.validation_ds.min_duration = 3.2\n",
"#with patch_size set to 16 and 10 patches, \n",
"#we need to be able to mask 160 time steps;\n",
"#at preprocessor stride 0.01 this means we need minimum duration of 1.6 seconds \n",
"#or more to sample only from masked steps in the same utterance\n",
"\n",
"cfg.model.loss_list.contrastive.loss.codebook_size = 32\n",
"cfg.model.loss_list.mlm.decoder.feat_out = 1024\n",
"\n",
"cfg.model.loss_list.contrastive.loss.num_negatives = 40\n",
"cfg.model.loss_list.contrastive.loss.quantizer_temp_decay = 0.999"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TrfAb1DjWzpL"
},
"source": [
"The following parameters will be used for decoder, loss, and masking:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "DTcn93gMXQba"
},
"outputs": [],
"source": [
"print(OmegaConf.to_yaml(cfg.model.loss_list))\n",
"print(OmegaConf.to_yaml(cfg.model.spec_augment))"
]
},
{
"cell_type": "markdown",
"source": [
"Note that for this loss the outputs must match the inputs, so since we are using Citrinet architecture with 8x stride, we would need to either set \"combine_time_steps\" to 8, or put additional stride layers in the decoder. By default for Citrinet with 8x stride we use \"combine_time_steps=4\" and \"stride_layers=1\" to match the 8x stride.\n",
"\n",
"Since in MaskedPatchAugmentation we set mask_patches to 0.5 and our min_durations are set to 3.2, we are guaranteed to have 1.6 masked second per utterance, or 160 masked steps. Since combine_time_steps is set to 4, this means that 160 / 4 = 40 total negatives can be sampled, so we set num_negatives to 40 (unless you set sample_from_same_utterance_only to false or sample_from_non_masked to true, but this tends to make results worse).\n",
"\n",
"In the default configs we assume that min_duration for samples is higher (8 seconds by default), so there we can set patch_size to 48 for a total of 480 masked steps, and use 100 sampled negatives. If the min_duration of samples that you are training on allows, the amount of masked steps as well as negatives can be increased further (masking around 50% of the sample duration tends to work well)."
],
"metadata": {
"id": "4JnepitBZ3ta"
}
},
{
"cell_type": "markdown",
"metadata": {
"id": "yoUIMS7mgrUs"
},
"source": [
"Now we can create the config object."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "l0IqI0Yugqc1"
},
"outputs": [],
"source": [
"cfg = OmegaConf.to_container(cfg, resolve=True)\n",
"cfg = OmegaConf.create(cfg)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OxxEwR05XatQ"
},
"source": [
"## Pre-training the model\n",
"\n",
"We can now create the model based on our config and start pre-training with pytorch lightning. In NeMo you can use the examples/asr/speech_pretraining/speech_pre_training.py script for this, which contains the following lines:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WbnVpz03Jxto"
},
"outputs": [],
"source": [
"import pytorch_lightning as pl\n",
"from omegaconf import OmegaConf\n",
"\n",
"from nemo.collections.asr.models.ssl_models import SpeechEncDecSelfSupervisedModel\n",
"from nemo.core.config import hydra_runner\n",
"from nemo.utils import logging\n",
"from nemo.utils.exp_manager import exp_manager\n",
"\n",
"trainer = pl.Trainer(**cfg.trainer)\n",
"exp_manager(trainer, cfg.get(\"exp_manager\", None))\n",
"asr_model = SpeechEncDecSelfSupervisedModel(cfg=cfg.model, trainer=trainer)\n",
"\n",
"trainer.fit(asr_model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FylnQvwvKIy9"
},
"source": [
"# Fine-tuning with pre-trained encoder"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RvhsJbsiKNj6"
},
"source": [
"Now that we have pre-trained our encoder, we can fine-tune our model with a supervised objective. Normally the dataset used for pre-training will be large and unlabeled, while the one used for fine-tuning will be a smaller labeled dataset. For the purpose of this tutorial we will just use the same dataset for fine-tuning."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Rk7uDmuHAD2e"
},
"source": [
"## Building tokenizer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9WsIHRVVADZu"
},
"outputs": [],
"source": [
"!mkdir scripts\n",
"!wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/main/scripts/tokenizers/process_asr_text_tokenizer.py\n",
"\n",
"!python ./scripts/process_asr_text_tokenizer.py \\\n",
" --manifest=\"{data_dir}/an4/train_manifest.json\" \\\n",
" --data_root=\"{data_dir}/tokenizers/an4/\" \\\n",
" --vocab_size=128 \\\n",
" --tokenizer=\"spe\" \\\n",
" --no_lower_case \\\n",
" --spe_type=\"unigram\" \\\n",
" --log"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Na0iuLoQMfgj"
},
"source": [
"## Creating config for fine-tuning with CTC objective\n",
"\n",
"We will now create a config for a ctc-based model with a matching encoder to the model we pre-trained."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "tzF8uOWOoqeO"
},
"outputs": [],
"source": [
"config_path = data_dir + '/configs/citrinet_1024.yaml'\n",
"\n",
"cfg = OmegaConf.load(config_path)\n",
"\n",
"cfg.model.model_defaults.filters = 256\n",
"cfg.model.model_defaults.repeat = 1\n",
"cfg.model.model_defaults.enc_final = 256\n",
"\n",
"cfg.model.spec_augment.freq_masks = 2\n",
"cfg.model.spec_augment.time_masks = 5\n",
"\n",
"cfg.model.train_ds.manifest_filepath = train_manifest\n",
"cfg.model.train_ds.batch_size = 16\n",
"\n",
"cfg.model.validation_ds.manifest_filepath = test_manifest\n",
"cfg.model.validation_ds.batch_size = 16\n",
"\n",
"cfg.model.log_prediction = False\n",
"\n",
"if torch.cuda.is_available():\n",
" cfg.trainer.accelerator = 'gpu'\n",
" cfg.trainer.strategy = 'dp'\n",
" cfg.trainer.gpus = 1\n",
"else:\n",
" cfg.trainer.accelerator = 'cpu'\n",
" cfg.trainer.strategy = None\n",
" cfg.trainer.gpus = 0\n",
"\n",
"cfg.model.tokenizer.dir = data_dir + \"/tokenizers/an4/tokenizer_spe_unigram_v128/\" # note this is a directory, not a path to a vocabulary file\n",
"cfg.model.tokenizer.type = \"bpe\"\n",
"\n",
"cfg.exp_manager.exp_dir = data_dir + \"/content/exp\"\n",
"cfg.exp_manager.name = \"fine_tuned\"\n",
"cfg.exp_manager.use_datetime_version = False\n",
"cfg.exp_manager.create_tensorboard_logger = False\n",
"cfg.exp_manager.resume_if_exists = True\n",
"cfg.exp_manager.resume_ignore_no_checkpoint = True\n",
"cfg.exp_manager.checkpoint_callback_params.save_best_model = True\n",
"\n",
"cfg.model.optim.sched.name = \"CosineAnnealing\"\n",
"cfg.model.optim.sched.warmup_steps = 500\n",
"cfg.model.optim.sched.max_steps = 2000\n",
"cfg.model.optim.sched.min_lr = 0\n",
"cfg.model.optim.lr = 0.015 #if encoder is frozen, lr can be much higher\n",
"cfg.model.optim.weight_decay = 0\n",
"\n",
"cfg.trainer.max_steps = cfg.model.optim.sched.max_steps"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "i3-_tFGDNPvZ"
},
"source": [
"In order to load our encoder, we add the following to the config. We need to set init_strict to False, since the decoder for this model will be different, in order to have the correct output for ctc."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3GKv7ERxNPRc"
},
"outputs": [],
"source": [
"cfg.init_from_nemo_model=data_dir + \"/content/exp/pre_trained/checkpoints/pre_trained.nemo\"\n",
"cfg.init_strict = False"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MOZmD9sjNgfX"
},
"outputs": [],
"source": [
"cfg = OmegaConf.to_container(cfg, resolve=True)\n",
"cfg = OmegaConf.create(cfg)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "InacQMmE8tPZ"
},
"source": [
"## Fine-tuning the model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "l3eNBs_sNhjE"
},
"source": [
"Initializing our model from config:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IEScq3t_vB6N"
},
"outputs": [],
"source": [
"from nemo.collections.asr.models.ctc_bpe_models import EncDecCTCModelBPE\n",
"\n",
"trainer = pl.Trainer(**cfg.trainer)\n",
"exp_manager(trainer, cfg.get(\"exp_manager\", None))\n",
"asr_model = EncDecCTCModelBPE(cfg=cfg.model, trainer=trainer)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uif9DLOQ8d0b"
},
"source": [
"Loading our pre-trained checkpoint:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Jes4vqx4vLRC"
},
"outputs": [],
"source": [
"asr_model.maybe_init_from_pretrained_checkpoint(cfg)"
]
},
{
"cell_type": "markdown",
"source": [
"We can optionally freeze the encoder and only fine-tune the decoder during training. This can be done to lower the memory and time requirements of fine-tuning, but will likely result in a higher word error rate."
],
"metadata": {
"id": "S5aVb2F8WuAR"
}
},
{
"cell_type": "code",
"source": [
"#asr_model.encoder.freeze()"
],
"metadata": {
"id": "LpF_YQUmXUR8"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "GdoIbsLn8gNC"
},
"source": [
"Now we can run fine-tuning."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "AACa0T6jJtMQ"
},
"outputs": [],
"source": [
"trainer.fit(asr_model)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Self_Supervised_Pre_Training.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 0
} |