File size: 36,930 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"Please run notebook locally (if you have all the dependencies and a GPU). \n",
"Technically you can run this notebook on Google Colab but you need to set up microphone for Colab.\n",
" \n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Set up microphone for Colab\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg portaudio19-dev\n",
"!pip install text-unidecode\n",
"!pip install pyaudio\n",
"\n",
"# ## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr]\n",
"\n",
"## Install TorchAudio\n",
"!pip install torchaudio>=0.13.0 -f https://download.pytorch.org/whl/torch_stable.html"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Voice Activity Detection (VAD)\n",
"\n",
"\n",
"This notebook demonstrates how to perform\n",
"1. [offline streaming inference on audio files (offline VAD)](#Offline-streaming-inference);\n",
"2. [finetuning](#Finetune) and use [posterior](#Posterior);\n",
"3. [vad postprocessing and threshold tuning](#VAD-postprocessing-and-Tuning-threshold);\n",
"4. [online streaming inference](#Online-streaming-inference);\n",
"5. [online streaming inference from a microphone's stream](#Online-streaming-inference-through-microphone).\n",
"\n",
"Note the incompatibility of components could lead to failure of running this notebook locally with container, we might deprecate this notebook and provide a better tutorial in soon releases."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The notebook requires PyAudio library to get a signal from an audio device.\n",
"For Ubuntu, please run the following commands to install it:\n",
"```\n",
"sudo apt install python3-pyaudio\n",
"pip install pyaudio\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook requires the `torchaudio` library to be installed for MarbleNet. Please follow the instructions available at the [torchaudio installer](https://github.com/NVIDIA/NeMo/blob/main/scripts/installers/install_torchaudio_latest.sh) and [torchaudio Github page](https://github.com/pytorch/audio#installation) to install the appropriate version of torchaudio.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pyaudio as pa\n",
"import os, time\n",
"import librosa\n",
"import IPython.display as ipd\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"import nemo\n",
"import nemo.collections.asr as nemo_asr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sample rate, Hz\n",
"SAMPLE_RATE = 16000"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Restore the model from NGC"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"vad_model = nemo_asr.models.EncDecClassificationModel.from_pretrained('vad_marblenet')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Observing the config of the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from omegaconf import OmegaConf\n",
"import copy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Preserve a copy of the full config\n",
"cfg = copy.deepcopy(vad_model._cfg)\n",
"print(OmegaConf.to_yaml(cfg))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup preprocessor with these settings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vad_model.preprocessor = vad_model.from_config_dict(cfg.preprocessor)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set model to inference mode\n",
"vad_model.eval();"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vad_model = vad_model.to(vad_model.device)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We demonstrate two methods for streaming inference:\n",
"1. [offline streaming inference (script)](#Offline-streaming-inference)\n",
"2. [online streaming inference (step-by-step)](#Online-streaming-inference)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Offline streaming inference\n",
"\n",
"VAD relies on shorter fixed-length segments for prediction. \n",
"\n",
"You can find all necessary steps about inference in \n",
"```python\n",
" Script: <NeMo_git_root>/examples/asr/speech_classification/vad_infer.py \n",
" Config: <NeMo_git_root>/examples/asr/conf/vad/vad_inference_postprocessing.yaml\n",
"```\n",
"Duration inference, we generate frame-level prediction by two approaches:\n",
"\n",
"1. shift the window of length `window_length_in_sec` (e.g. 0.63s) by `shift_length_in_sec` (e.g. 10ms) to generate the frame and use the prediction of the window to represent the label for the frame; Use \n",
"```python\n",
" <NeMo_git_root>/examples/asr/speech_classification/vad_infer.py\n",
"```\n",
"\n",
" This script will automatically split long audio file to avoid CUDA memory issue and performing **streaming** inside `AudioLabelDataset`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Posterior\n",
"<img src=\"https://raw.githubusercontent.com/NVIDIA/NeMo/v1.0.2/tutorials/asr/images/vad_post_overlap_diagram.png\" width=\"500\">\n",
"\n",
"2. generate predictions with overlapping input segments. Then a smoothing filter is applied to decide the label for a frame spanned by multiple segments. Perform this step alongside with above step with flag **gen_overlap_seq=True** or use\n",
"```python\n",
"<NeMo_git_root>/scripts/voice_activity_detection/vad_overlap_posterior.py\n",
"```\n",
"if you already have frame level prediction. \n",
"\n",
"Have a look at [MarbleNet paper](https://arxiv.org/pdf/2010.13886.pdf) for choices about segment length, smoothing filter, etc. And play with those parameters with your data.\n",
"\n",
"You can also find posterior about converting frame level prediction to speech/no-speech segment in start and end times format in `vad_overlap_posterior.py` or use flag **gen_seg_table=True** alongside with `vad_infer.py`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Finetune\n",
"You might need to finetune on your data for better performance. For finetuning/transfer learning, please refer to [**Transfer learning** part of ASR tutorial](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/asr/ASR_with_NeMo.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## VAD postprocessing and Tuning threshold"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can use a single **threshold** (achieved by onset=offset=0.5) to binarize predictions or use typical VAD postprocessing including\n",
"\n",
"### Binarization:\n",
"1. **onset** and **offset** threshold for detecting the beginning and end of a speech;\n",
"2. padding durations before (**pad_onset**) and after (**pad_offset**) each speech segment.\n",
"\n",
"### Filtering:\n",
"1. threshold for short speech segment deletion (**min_duration_on**);\n",
"2. threshold for small silence deletion (**min_duration_off**);\n",
"3. Whether to perform short speech segment deletion first (**filter_speech_first**).\n",
"\n",
"\n",
"Of course you can do threshold tuning on frame level prediction. We also provide a script \n",
"```python\n",
"<NeMo_git_root>/scripts/voice_activity_detection/vad_tune_threshold.py\n",
"```\n",
"\n",
"to help you find best thresholds if you have ground truth label file in RTTM format. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Online streaming inference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setting up data for Streaming Inference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.core.classes import IterableDataset\n",
"from nemo.core.neural_types import NeuralType, AudioSignal, LengthsType\n",
"import torch\n",
"from torch.utils.data import DataLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# simple data layer to pass audio signal\n",
"class AudioDataLayer(IterableDataset):\n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'audio_signal': NeuralType(('B', 'T'), AudioSignal(freq=self._sample_rate)),\n",
" 'a_sig_length': NeuralType(tuple('B'), LengthsType()),\n",
" }\n",
"\n",
" def __init__(self, sample_rate):\n",
" super().__init__()\n",
" self._sample_rate = sample_rate\n",
" self.output = True\n",
" \n",
" def __iter__(self):\n",
" return self\n",
" \n",
" def __next__(self):\n",
" if not self.output:\n",
" raise StopIteration\n",
" self.output = False\n",
" return torch.as_tensor(self.signal, dtype=torch.float32), \\\n",
" torch.as_tensor(self.signal_shape, dtype=torch.int64)\n",
" \n",
" def set_signal(self, signal):\n",
" self.signal = signal.astype(np.float32)/32768.\n",
" self.signal_shape = self.signal.size\n",
" self.output = True\n",
"\n",
" def __len__(self):\n",
" return 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_layer = AudioDataLayer(sample_rate=cfg.train_ds.sample_rate)\n",
"data_loader = DataLoader(data_layer, batch_size=1, collate_fn=data_layer.collate_fn)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# inference method for audio signal (single instance)\n",
"def infer_signal(model, signal):\n",
" data_layer.set_signal(signal)\n",
" batch = next(iter(data_loader))\n",
" audio_signal, audio_signal_len = batch\n",
" audio_signal, audio_signal_len = audio_signal.to(vad_model.device), audio_signal_len.to(vad_model.device)\n",
" logits = model.forward(input_signal=audio_signal, input_signal_length=audio_signal_len)\n",
" return logits"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# class for streaming frame-based VAD\n",
"# 1) use reset() method to reset FrameVAD's state\n",
"# 2) call transcribe(frame) to do VAD on\n",
"# contiguous signal's frames\n",
"# To simplify the flow, we use single threshold to binarize predictions.\n",
"class FrameVAD:\n",
" \n",
" def __init__(self, model_definition,\n",
" threshold=0.5,\n",
" frame_len=2, frame_overlap=2.5, \n",
" offset=10):\n",
" '''\n",
" Args:\n",
" threshold: If prob of speech is larger than threshold, classify the segment to be speech.\n",
" frame_len: frame's duration, seconds\n",
" frame_overlap: duration of overlaps before and after current frame, seconds\n",
" offset: number of symbols to drop for smooth streaming\n",
" '''\n",
" self.vocab = list(model_definition['labels'])\n",
" self.vocab.append('_')\n",
" \n",
" self.sr = model_definition['sample_rate']\n",
" self.threshold = threshold\n",
" self.frame_len = frame_len\n",
" self.n_frame_len = int(frame_len * self.sr)\n",
" self.frame_overlap = frame_overlap\n",
" self.n_frame_overlap = int(frame_overlap * self.sr)\n",
" timestep_duration = model_definition['AudioToMFCCPreprocessor']['window_stride']\n",
" for block in model_definition['JasperEncoder']['jasper']:\n",
" timestep_duration *= block['stride'][0] ** block['repeat']\n",
" self.buffer = np.zeros(shape=2*self.n_frame_overlap + self.n_frame_len,\n",
" dtype=np.float32)\n",
" self.offset = offset\n",
" self.reset()\n",
" \n",
" def _decode(self, frame, offset=0):\n",
" assert len(frame)==self.n_frame_len\n",
" self.buffer[:-self.n_frame_len] = self.buffer[self.n_frame_len:]\n",
" self.buffer[-self.n_frame_len:] = frame\n",
" logits = infer_signal(vad_model, self.buffer).cpu().numpy()[0]\n",
" decoded = self._greedy_decoder(\n",
" self.threshold,\n",
" logits,\n",
" self.vocab\n",
" )\n",
" return decoded \n",
" \n",
" \n",
" @torch.no_grad()\n",
" def transcribe(self, frame=None):\n",
" if frame is None:\n",
" frame = np.zeros(shape=self.n_frame_len, dtype=np.float32)\n",
" if len(frame) < self.n_frame_len:\n",
" frame = np.pad(frame, [0, self.n_frame_len - len(frame)], 'constant')\n",
" unmerged = self._decode(frame, self.offset)\n",
" return unmerged\n",
" \n",
" def reset(self):\n",
" '''\n",
" Reset frame_history and decoder's state\n",
" '''\n",
" self.buffer=np.zeros(shape=self.buffer.shape, dtype=np.float32)\n",
" self.prev_char = ''\n",
"\n",
" @staticmethod\n",
" def _greedy_decoder(threshold, logits, vocab):\n",
" s = []\n",
" if logits.shape[0]:\n",
" probs = torch.softmax(torch.as_tensor(logits), dim=-1)\n",
" probas, _ = torch.max(probs, dim=-1)\n",
" probas_s = probs[1].item()\n",
" preds = 1 if probas_s >= threshold else 0\n",
" s = [preds, str(vocab[preds]), probs[0].item(), probs[1].item(), str(logits)]\n",
" return s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"Streaming inference depends on a few factors, such as the frame length (STEP) and buffer size (WINDOW SIZE). Experiment with a few values to see their effects in the below cells."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"STEP_LIST = [0.01,0.01]\n",
"WINDOW_SIZE_LIST = [0.31,0.15]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import wave\n",
"\n",
"def offline_inference(wave_file, STEP = 0.025, WINDOW_SIZE = 0.5, threshold=0.5):\n",
" \n",
" FRAME_LEN = STEP # infer every STEP seconds \n",
" CHANNELS = 1 # number of audio channels (expect mono signal)\n",
" RATE = 16000 # sample rate, Hz\n",
" \n",
" \n",
" CHUNK_SIZE = int(FRAME_LEN*RATE)\n",
" \n",
" vad = FrameVAD(model_definition = {\n",
" 'sample_rate': SAMPLE_RATE,\n",
" 'AudioToMFCCPreprocessor': cfg.preprocessor,\n",
" 'JasperEncoder': cfg.encoder,\n",
" 'labels': cfg.labels\n",
" },\n",
" threshold=threshold,\n",
" frame_len=FRAME_LEN, frame_overlap = (WINDOW_SIZE-FRAME_LEN)/2,\n",
" offset=0)\n",
"\n",
" wf = wave.open(wave_file, 'rb')\n",
" p = pa.PyAudio()\n",
"\n",
" empty_counter = 0\n",
"\n",
" preds = []\n",
" proba_b = []\n",
" proba_s = []\n",
" \n",
" stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),\n",
" channels=CHANNELS,\n",
" rate=RATE,\n",
" output = True)\n",
"\n",
" data = wf.readframes(CHUNK_SIZE)\n",
"\n",
" while len(data) > 0:\n",
"\n",
" data = wf.readframes(CHUNK_SIZE)\n",
" signal = np.frombuffer(data, dtype=np.int16)\n",
" result = vad.transcribe(signal)\n",
"\n",
" preds.append(result[0])\n",
" proba_b.append(result[2])\n",
" proba_s.append(result[3])\n",
" \n",
" if len(result):\n",
" print(result,end='\\n')\n",
" empty_counter = 3\n",
" elif empty_counter > 0:\n",
" empty_counter -= 1\n",
" if empty_counter == 0:\n",
" print(' ',end='')\n",
" \n",
" p.terminate()\n",
" vad.reset()\n",
" \n",
" return preds, proba_b, proba_s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Here we show an example of online streaming inference\n",
"You can use your file or download the provided demo audio file. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"demo_wave = 'VAD_demo.wav'\n",
"if not os.path.exists(demo_wave):\n",
" !wget \"https://dldata-public.s3.us-east-2.amazonaws.com/VAD_demo.wav\" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wave_file = demo_wave\n",
"\n",
"CHANNELS = 1\n",
"RATE = 16000\n",
"audio, sample_rate = librosa.load(wave_file, sr=RATE)\n",
"dur = librosa.get_duration(audio)\n",
"print(dur)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"ipd.Audio(audio, rate=sample_rate)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"threshold=0.4\n",
"\n",
"results = []\n",
"for STEP, WINDOW_SIZE in zip(STEP_LIST, WINDOW_SIZE_LIST, ):\n",
" print(f'====== STEP is {STEP}s, WINDOW_SIZE is {WINDOW_SIZE}s ====== ')\n",
" preds, proba_b, proba_s = offline_inference(wave_file, STEP, WINDOW_SIZE, threshold)\n",
" results.append([STEP, WINDOW_SIZE, preds, proba_b, proba_s])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To simplify the flow, the above prediction is based on single threshold and `threshold=0.4`.\n",
"\n",
"You can play with other [threshold](#VAD-postprocessing-and-Tuning-threshold) or use postprocessing and see how they would impact performance. \n",
"\n",
"**Note** if you want better performance, [finetune](#Finetune) on your data and use posteriors such as [overlapped prediction](#Posterior). \n",
"\n",
"Let's plot the prediction and melspectrogram"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import librosa.display\n",
"plt.figure(figsize=[20,10])\n",
"\n",
"num = len(results)\n",
"for i in range(num):\n",
" len_pred = len(results[i][2]) \n",
" FRAME_LEN = results[i][0]\n",
" ax1 = plt.subplot(num+1,1,i+1)\n",
"\n",
" ax1.plot(np.arange(audio.size) / sample_rate, audio, 'b')\n",
" ax1.set_xlim([-0.01, int(dur)+1]) \n",
" ax1.tick_params(axis='y', labelcolor= 'b')\n",
" ax1.set_ylabel('Signal')\n",
" ax1.set_ylim([-1, 1])\n",
"\n",
" proba_s = results[i][4]\n",
" pred = [1 if p > threshold else 0 for p in proba_s]\n",
" ax2 = ax1.twinx()\n",
" ax2.plot(np.arange(len_pred)/(1/results[i][0]), np.array(pred) , 'r', label='pred')\n",
" ax2.plot(np.arange(len_pred)/(1/results[i][0]), np.array(proba_s) , 'g--', label='speech prob')\n",
" ax2.tick_params(axis='y', labelcolor='r')\n",
" legend = ax2.legend(loc='lower right', shadow=True)\n",
" ax1.set_ylabel('prediction')\n",
"\n",
" ax2.set_title(f'step {results[i][0]}s, buffer size {results[i][1]}s')\n",
" ax2.set_ylabel('Preds and Probas')\n",
" \n",
" \n",
"ax = plt.subplot(num+1,1,i+2)\n",
"S = librosa.feature.melspectrogram(y=audio, sr=sample_rate, n_mels=64, fmax=8000)\n",
"S_dB = librosa.power_to_db(S, ref=np.max)\n",
"librosa.display.specshow(S_dB, x_axis='time', y_axis='mel', sr=sample_rate, fmax=8000)\n",
"ax.set_title('Mel-frequency spectrogram')\n",
"ax.grid()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Online streaming inference through microphone"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Please note the VAD model is not perfect for various microphone input and you might need to finetune on your input and play with different parameters.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"STEP = 0.01 \n",
"WINDOW_SIZE = 0.31\n",
"CHANNELS = 1 \n",
"RATE = 16000\n",
"FRAME_LEN = STEP\n",
"THRESHOLD = 0.5\n",
"\n",
"CHUNK_SIZE = int(STEP * RATE)\n",
"vad = FrameVAD(model_definition = {\n",
" 'sample_rate': SAMPLE_RATE,\n",
" 'AudioToMFCCPreprocessor': cfg.preprocessor,\n",
" 'JasperEncoder': cfg.encoder,\n",
" 'labels': cfg.labels\n",
" },\n",
" threshold=THRESHOLD,\n",
" frame_len=FRAME_LEN, frame_overlap=(WINDOW_SIZE - FRAME_LEN) / 2, \n",
" offset=0)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vad.reset()\n",
"\n",
"p = pa.PyAudio()\n",
"print('Available audio input devices:')\n",
"input_devices = []\n",
"for i in range(p.get_device_count()):\n",
" dev = p.get_device_info_by_index(i)\n",
" if dev.get('maxInputChannels'):\n",
" input_devices.append(i)\n",
" print(i, dev.get('name'))\n",
"\n",
"if len(input_devices):\n",
" dev_idx = -2\n",
" while dev_idx not in input_devices:\n",
" print('Please type input device ID:')\n",
" dev_idx = int(input())\n",
"\n",
" empty_counter = 0\n",
"\n",
" def callback(in_data, frame_count, time_info, status):\n",
" global empty_counter\n",
" signal = np.frombuffer(in_data, dtype=np.int16)\n",
" text = vad.transcribe(signal)\n",
" if len(text):\n",
" print(text,end='\\n')\n",
" empty_counter = vad.offset\n",
" elif empty_counter > 0:\n",
" empty_counter -= 1\n",
" if empty_counter == 0:\n",
" print(' ',end='\\n')\n",
" return (in_data, pa.paContinue)\n",
"\n",
" stream = p.open(format=pa.paInt16,\n",
" channels=CHANNELS,\n",
" rate=SAMPLE_RATE,\n",
" input=True,\n",
" input_device_index=dev_idx,\n",
" stream_callback=callback,\n",
" frames_per_buffer=CHUNK_SIZE)\n",
"\n",
" print('Listening...')\n",
"\n",
" stream.start_stream()\n",
" \n",
" # Interrupt kernel and then speak for a few more words to exit the pyaudio loop !\n",
" try:\n",
" while stream.is_active():\n",
" time.sleep(0.1)\n",
" finally: \n",
" stream.stop_stream()\n",
" stream.close()\n",
" p.terminate()\n",
"\n",
" print()\n",
" print(\"PyAudio stopped\")\n",
" \n",
"else:\n",
" print('ERROR: No audio input device found.')"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## ONNX Deployment\n",
"You can also export the model to ONNX file and deploy it to TensorRT or MS ONNX Runtime inference engines. If you don't have one installed yet, please run:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install --upgrade onnxruntime # for gpu, use onnxruntime-gpu\n",
"# !mkdir -p ort\n",
"# %cd ort\n",
"# !git clone --depth 1 --branch v1.8.0 https://github.com/microsoft/onnxruntime.git .\n",
"# !./build.sh --skip_tests --config Release --build_shared_lib --parallel --use_cuda --cuda_home /usr/local/cuda --cudnn_home /usr/lib/x86_64-linux-gnu --build_wheel\n",
"# !pip install ./build/Linux/Release/dist/onnxruntime*.whl\n",
"# %cd .."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then just replace `infer_signal` implementation with this code:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"import onnxruntime\n",
"vad_model.export('vad.onnx')\n",
"ort_session = onnxruntime.InferenceSession('vad.onnx')\n",
"\n",
"def to_numpy(tensor):\n",
" return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()\n",
"\n",
"def infer_signal(signal):\n",
" data_layer.set_signal(signal)\n",
" batch = next(iter(data_loader))\n",
" audio_signal, audio_signal_len = batch\n",
" audio_signal, audio_signal_len = audio_signal.to(vad_model.device), audio_signal_len.to(vad_model.device)\n",
" processed_signal, processed_signal_len = vad_model.preprocessor(\n",
" input_signal=audio_signal, length=audio_signal_len,\n",
" )\n",
" ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(processed_signal), }\n",
" ologits = ort_session.run(None, ort_inputs)\n",
" alogits = np.asarray(ologits)\n",
" logits = torch.from_numpy(alogits[0])\n",
" return logits"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|