File size: 22,920 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"Please run notebook locally (if you have all the dependencies and a GPU). \n",
"Technically you can run this notebook on Google Colab but you need to set up microphone for Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Set up microphone for Colab\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg portaudio19-dev\n",
"!pip install text-unidecode\n",
"!pip install pyaudio\n",
"\n",
"# ## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr]\n",
"\n",
"## Grab the config we'll use in this example\n",
"!mkdir configs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook demonstrates automatic speech recognition (ASR) from a microphone's stream in NeMo.\n",
"\n",
"It is **not a recommended** way to do inference in production workflows. And the incompatibility of components could lead to failure of running this notebook locally with container, we might deprecate this notebook and provide a better tutorial in soon releases. If you are interested in production-level inference using NeMo ASR models, please refer to NVIDIA RIVA: https://developer.nvidia.com/riva"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The notebook requires PyAudio library to get a signal from an audio device.\n",
"For Ubuntu, please run the following commands to install it:\n",
"```\n",
"sudo apt install python3-pyaudio\n",
"pip install pyaudio\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pyaudio as pa\n",
"import os, time"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import nemo\n",
"import nemo.collections.asr as nemo_asr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sample rate, Hz\n",
"SAMPLE_RATE = 16000"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Restore the model from NGC"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained('QuartzNet15x5Base-En')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Observing the config of the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from omegaconf import OmegaConf\n",
"import copy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Preserve a copy of the full config\n",
"cfg = copy.deepcopy(asr_model._cfg)\n",
"print(OmegaConf.to_yaml(cfg))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Modify preprocessor parameters for inference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Make config overwrite-able\n",
"OmegaConf.set_struct(cfg.preprocessor, False)\n",
"\n",
"# some changes for streaming scenario\n",
"cfg.preprocessor.dither = 0.0\n",
"cfg.preprocessor.pad_to = 0\n",
"\n",
"# spectrogram normalization constants\n",
"normalization = {}\n",
"normalization['fixed_mean'] = [\n",
" -14.95827016, -12.71798736, -11.76067913, -10.83311182,\n",
" -10.6746914, -10.15163465, -10.05378331, -9.53918999,\n",
" -9.41858904, -9.23382904, -9.46470918, -9.56037,\n",
" -9.57434245, -9.47498732, -9.7635205, -10.08113074,\n",
" -10.05454561, -9.81112681, -9.68673603, -9.83652977,\n",
" -9.90046248, -9.85404766, -9.92560366, -9.95440354,\n",
" -10.17162966, -9.90102482, -9.47471025, -9.54416855,\n",
" -10.07109475, -9.98249912, -9.74359465, -9.55632283,\n",
" -9.23399915, -9.36487649, -9.81791084, -9.56799225,\n",
" -9.70630899, -9.85148006, -9.8594418, -10.01378735,\n",
" -9.98505315, -9.62016094, -10.342285, -10.41070709,\n",
" -10.10687659, -10.14536695, -10.30828702, -10.23542833,\n",
" -10.88546868, -11.31723646, -11.46087382, -11.54877829,\n",
" -11.62400934, -11.92190509, -12.14063815, -11.65130117,\n",
" -11.58308531, -12.22214663, -12.42927197, -12.58039805,\n",
" -13.10098969, -13.14345864, -13.31835645, -14.47345634]\n",
"normalization['fixed_std'] = [\n",
" 3.81402054, 4.12647781, 4.05007065, 3.87790987,\n",
" 3.74721178, 3.68377423, 3.69344, 3.54001005,\n",
" 3.59530412, 3.63752368, 3.62826417, 3.56488469,\n",
" 3.53740577, 3.68313898, 3.67138151, 3.55707266,\n",
" 3.54919572, 3.55721289, 3.56723346, 3.46029304,\n",
" 3.44119672, 3.49030548, 3.39328435, 3.28244406,\n",
" 3.28001423, 3.26744937, 3.46692348, 3.35378948,\n",
" 2.96330901, 2.97663111, 3.04575148, 2.89717604,\n",
" 2.95659301, 2.90181116, 2.7111687, 2.93041291,\n",
" 2.86647897, 2.73473181, 2.71495654, 2.75543763,\n",
" 2.79174615, 2.96076456, 2.57376336, 2.68789782,\n",
" 2.90930817, 2.90412004, 2.76187531, 2.89905006,\n",
" 2.65896173, 2.81032176, 2.87769857, 2.84665271,\n",
" 2.80863137, 2.80707634, 2.83752184, 3.01914511,\n",
" 2.92046439, 2.78461139, 2.90034605, 2.94599508,\n",
" 2.99099718, 3.0167554, 3.04649716, 2.94116777]\n",
"\n",
"cfg.preprocessor.normalize = normalization\n",
"\n",
"# Disable config overwriting\n",
"OmegaConf.set_struct(cfg.preprocessor, True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup preprocessor with these settings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"asr_model.preprocessor = asr_model.from_config_dict(cfg.preprocessor)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set model to inference mode\n",
"asr_model.eval();"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"asr_model = asr_model.to(asr_model.device)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setting up data for Streaming Inference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.core.classes import IterableDataset\n",
"from nemo.core.neural_types import NeuralType, AudioSignal, LengthsType\n",
"import torch\n",
"from torch.utils.data import DataLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# simple data layer to pass audio signal\n",
"class AudioDataLayer(IterableDataset):\n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'audio_signal': NeuralType(('B', 'T'), AudioSignal(freq=self._sample_rate)),\n",
" 'a_sig_length': NeuralType(tuple('B'), LengthsType()),\n",
" }\n",
"\n",
" def __init__(self, sample_rate):\n",
" super().__init__()\n",
" self._sample_rate = sample_rate\n",
" self.output = True\n",
" \n",
" def __iter__(self):\n",
" return self\n",
" \n",
" def __next__(self):\n",
" if not self.output:\n",
" raise StopIteration\n",
" self.output = False\n",
" return torch.as_tensor(self.signal, dtype=torch.float32), \\\n",
" torch.as_tensor(self.signal_shape, dtype=torch.int64)\n",
" \n",
" def set_signal(self, signal):\n",
" self.signal = signal.astype(np.float32)/32768.\n",
" self.signal_shape = self.signal.size\n",
" self.output = True\n",
"\n",
" def __len__(self):\n",
" return 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_layer = AudioDataLayer(sample_rate=cfg.preprocessor.sample_rate)\n",
"data_loader = DataLoader(data_layer, batch_size=1, collate_fn=data_layer.collate_fn)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# inference method for audio signal (single instance)\n",
"def infer_signal(model, signal):\n",
" data_layer.set_signal(signal)\n",
" batch = next(iter(data_loader))\n",
" audio_signal, audio_signal_len = batch\n",
" audio_signal, audio_signal_len = audio_signal.to(asr_model.device), audio_signal_len.to(asr_model.device)\n",
" log_probs, encoded_len, predictions = model.forward(\n",
" input_signal=audio_signal, input_signal_length=audio_signal_len\n",
" )\n",
" return log_probs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# class for streaming frame-based ASR\n",
"# 1) use reset() method to reset FrameASR's state\n",
"# 2) call transcribe(frame) to do ASR on\n",
"# contiguous signal's frames\n",
"class FrameASR:\n",
" \n",
" def __init__(self, model_definition,\n",
" frame_len=2, frame_overlap=2.5, \n",
" offset=10):\n",
" '''\n",
" Args:\n",
" frame_len: frame's duration, seconds\n",
" frame_overlap: duration of overlaps before and after current frame, seconds\n",
" offset: number of symbols to drop for smooth streaming\n",
" '''\n",
" self.vocab = list(model_definition['labels'])\n",
" self.vocab.append('_')\n",
" \n",
" self.sr = model_definition['sample_rate']\n",
" self.frame_len = frame_len\n",
" self.n_frame_len = int(frame_len * self.sr)\n",
" self.frame_overlap = frame_overlap\n",
" self.n_frame_overlap = int(frame_overlap * self.sr)\n",
" timestep_duration = model_definition['AudioToMelSpectrogramPreprocessor']['window_stride']\n",
" for block in model_definition['JasperEncoder']['jasper']:\n",
" timestep_duration *= block['stride'][0] ** block['repeat']\n",
" self.n_timesteps_overlap = int(frame_overlap / timestep_duration) - 2\n",
" self.buffer = np.zeros(shape=2*self.n_frame_overlap + self.n_frame_len,\n",
" dtype=np.float32)\n",
" self.offset = offset\n",
" self.reset()\n",
" \n",
" def _decode(self, frame, offset=0):\n",
" assert len(frame)==self.n_frame_len\n",
" self.buffer[:-self.n_frame_len] = self.buffer[self.n_frame_len:]\n",
" self.buffer[-self.n_frame_len:] = frame\n",
" logits = infer_signal(asr_model, self.buffer).cpu().numpy()[0]\n",
" # print(logits.shape)\n",
" decoded = self._greedy_decoder(\n",
" logits[self.n_timesteps_overlap:-self.n_timesteps_overlap], \n",
" self.vocab\n",
" )\n",
" return decoded[:len(decoded)-offset]\n",
" \n",
" @torch.no_grad()\n",
" def transcribe(self, frame=None, merge=True):\n",
" if frame is None:\n",
" frame = np.zeros(shape=self.n_frame_len, dtype=np.float32)\n",
" if len(frame) < self.n_frame_len:\n",
" frame = np.pad(frame, [0, self.n_frame_len - len(frame)], 'constant')\n",
" unmerged = self._decode(frame, self.offset)\n",
" if not merge:\n",
" return unmerged\n",
" return self.greedy_merge(unmerged)\n",
" \n",
" def reset(self):\n",
" '''\n",
" Reset frame_history and decoder's state\n",
" '''\n",
" self.buffer=np.zeros(shape=self.buffer.shape, dtype=np.float32)\n",
" self.prev_char = ''\n",
"\n",
" @staticmethod\n",
" def _greedy_decoder(logits, vocab):\n",
" s = ''\n",
" for i in range(logits.shape[0]):\n",
" s += vocab[np.argmax(logits[i])]\n",
" return s\n",
"\n",
" def greedy_merge(self, s):\n",
" s_merged = ''\n",
" \n",
" for i in range(len(s)):\n",
" if s[i] != self.prev_char:\n",
" self.prev_char = s[i]\n",
" if self.prev_char != '_':\n",
" s_merged += self.prev_char\n",
" return s_merged"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Streaming Inference\n",
"\n",
"Streaming inference depends on a few factors, such as the frame length and buffer size. Experiment with a few values to see their effects in the below cells."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# duration of signal frame, seconds\n",
"FRAME_LEN = 1.0\n",
"# number of audio channels (expect mono signal)\n",
"CHANNELS = 1\n",
"\n",
"CHUNK_SIZE = int(FRAME_LEN*SAMPLE_RATE)\n",
"asr = FrameASR(model_definition = {\n",
" 'sample_rate': SAMPLE_RATE,\n",
" 'AudioToMelSpectrogramPreprocessor': cfg.preprocessor,\n",
" 'JasperEncoder': cfg.encoder,\n",
" 'labels': cfg.decoder.vocabulary\n",
" },\n",
" frame_len=FRAME_LEN, frame_overlap=2, \n",
" offset=4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"asr.reset()\n",
"\n",
"p = pa.PyAudio()\n",
"print('Available audio input devices:')\n",
"input_devices = []\n",
"for i in range(p.get_device_count()):\n",
" dev = p.get_device_info_by_index(i)\n",
" if dev.get('maxInputChannels'):\n",
" input_devices.append(i)\n",
" print(i, dev.get('name'))\n",
"\n",
"if len(input_devices):\n",
" dev_idx = -2\n",
" while dev_idx not in input_devices:\n",
" print('Please type input device ID:')\n",
" dev_idx = int(input())\n",
"\n",
" empty_counter = 0\n",
"\n",
" def callback(in_data, frame_count, time_info, status):\n",
" global empty_counter\n",
" signal = np.frombuffer(in_data, dtype=np.int16)\n",
" text = asr.transcribe(signal)\n",
" if len(text):\n",
" print(text,end='')\n",
" empty_counter = asr.offset\n",
" elif empty_counter > 0:\n",
" empty_counter -= 1\n",
" if empty_counter == 0:\n",
" print(' ',end='')\n",
" return (in_data, pa.paContinue)\n",
"\n",
" stream = p.open(format=pa.paInt16,\n",
" channels=CHANNELS,\n",
" rate=SAMPLE_RATE,\n",
" input=True,\n",
" input_device_index=dev_idx,\n",
" stream_callback=callback,\n",
" frames_per_buffer=CHUNK_SIZE)\n",
"\n",
" print('Listening...')\n",
"\n",
" stream.start_stream()\n",
" \n",
" # Interrupt kernel and then speak for a few more words to exit the pyaudio loop !\n",
" try:\n",
" while stream.is_active():\n",
" time.sleep(0.1)\n",
" finally: \n",
" stream.stop_stream()\n",
" stream.close()\n",
" p.terminate()\n",
"\n",
" print()\n",
" print(\"PyAudio stopped\")\n",
" \n",
"else:\n",
" print('ERROR: No audio input device found.')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|