File size: 61,440 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "ASR_with_Subword_Tokenization.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "toc_visible": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3",
      "language": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "metadata": {
        "id": "HqBQwLAsme9b"
      },
      "source": [
        "\"\"\"\n",
        "You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
        "\n",
        "Instructions for setting up Colab are as follows:\n",
        "1. Open a new Python 3 notebook.\n",
        "2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
        "3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
        "4. Run this cell to set up dependencies.\n",
        "5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
        "\"\"\"\n",
        "\n",
        "# Install dependencies\n",
        "!pip install wget\n",
        "!apt-get install sox libsndfile1 ffmpeg\n",
        "!pip install text-unidecode\n",
        "!pip install matplotlib>=3.3.2\n",
        "\n",
        "## Install NeMo\n",
        "BRANCH = 'r1.17.0'\n",
        "!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
        "\n",
        "## Grab the config we'll use in this example\n",
        "!mkdir configs\n",
        "!wget -P configs/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/citrinet/config_bpe.yaml\n",
        "\n",
        "\"\"\"\n",
        "Remember to restart the runtime for the kernel to pick up any upgraded packages (e.g. matplotlib)!\n",
        "Alternatively, you can uncomment the exit() below to crash and restart the kernel, in the case\n",
        "that you want to use the \"Run All Cells\" (or similar) option.\n",
        "\"\"\"\n",
        "# exit()"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "jW8pMLX4EKb0"
      },
      "source": [
        "# Automatic Speech Recognition with Subword Tokenization\r\n",
        "\r\n",
        "In the [ASR with NeMo notebook](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/asr/ASR_with_NeMo.ipynb), we discuss the pipeline necessary for Automatic Speech Recognition (ASR), and then use the NeMo toolkit to construct a functioning speech recognition model.\r\n",
        "\r\n",
        "In this notebook, we take a step further and look into subword tokenization as a useful encoding scheme for ASR models, and why they are necessary. We then construct a custom tokenizer from the dataset, and use it to construct and train an ASR model on the  [AN4 dataset from CMU](http://www.speech.cs.cmu.edu/databases/an4/) (with processing using `sox`)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "w2pDg6jJLLVM"
      },
      "source": [
        "## Subword Tokenization\r\n",
        "\r\n",
        "We begin with a short intro to what exactly is subword tokenization. If you are familiar with some Natural Language Processing terminologies, then you might have heard of the term \"<i>subword</i>\" frequently.\r\n",
        "\r\n",
        "So what is a subword in the first place? Simply put, it is either a single character or a group of characters. When combined according to a tokenization-detokenization algorithm, it generates a set of characters, words, or entire sentences. \r\n",
        "\r\n",
        "Many subword tokenization-detokenization algorithms exist, which can be built using large corpora of text data to tokenize and detokenize the data to and from subwords effectively. Some of the most commonly used subword tokenization methods are [Byte Pair Encoding](https://arxiv.org/abs/1508.07909), [Word Piece Encoding](https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf) and [Sentence Piece Encoding](https://www.aclweb.org/anthology/D18-2012/), to name just a few.\r\n",
        "\r\n",
        "------\r\n",
        "\r\n",
        "Here, we will show a short demo on why subword tokenization is necessary for Automatic Speech Recognition under certain situations and its benefits to the model in terms of efficiency and accuracy."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "AkWcsSG2Po7Z"
      },
      "source": [
        "We will implement the general steps that a subword tokenization algorithm might perform. Note - this is just a simplified demonstration of the underlying technique."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "M_MQ7NLlBbup"
      },
      "source": [
        "TEXT_CORPUS = [\r\n",
        "  \"hello world\",\r\n",
        "  \"today is a good day\",\r\n",
        "]"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "I8yowgMlQO4E"
      },
      "source": [
        "We first start with a simple character tokenizer"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "3tusMof9QMs7"
      },
      "source": [
        "def char_tokenize(text):\r\n",
        "  tokens = []\r\n",
        "  for char in text:\r\n",
        "    tokens.append(ord(char))\r\n",
        "  return tokens\r\n",
        "\r\n",
        "def char_detokenize(tokens):\r\n",
        "  tokens = [chr(t) for t in tokens]\r\n",
        "  text = \"\".join(tokens)\r\n",
        "  return text"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "lKgkvA2iQsbX"
      },
      "source": [
        "Now make sure that character tokenizer is doing its job correctly !"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "2stpuRsNQpMJ"
      },
      "source": [
        "char_tokens = char_tokenize(TEXT_CORPUS[0])\r\n",
        "print(\"Tokenized tokens :\", char_tokens)\r\n",
        "text = char_detokenize(char_tokens)\r\n",
        "print(\"Detokenized text :\", text)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "gY6G6Ow1RSf4"
      },
      "source": [
        "-----\r\n",
        "Great! The character tokenizer did its job correctly - each character is separated as an individual token, and they can be reconstructed into precisely the original text!\r\n",
        "\r\n",
        "Now let's create a simple dictionary-based tokenizer - it will have a select set of subwords that it will use to map tokens back and forth. Note - to simplify the technique's demonstration; we will use a vocabulary with entire words. However, note that this is an uncommon occurrence unless the vocabulary sizes are huge when built on natural text."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Mhn2MxODRNTv"
      },
      "source": [
        "def dict_tokenize(text, vocabulary):\r\n",
        "  tokens = []\r\n",
        "\r\n",
        "  # first do full word searches\r\n",
        "  split_text = text.split()\r\n",
        "  for split in split_text:\r\n",
        "    if split in vocabulary:\r\n",
        "      tokens.append(vocabulary[split])\r\n",
        "    else:\r\n",
        "      chars = list(split)\r\n",
        "      t_chars = [vocabulary[c] for c in chars]\r\n",
        "      tokens.extend(t_chars)\r\n",
        "    tokens.append(vocabulary[\" \"])\r\n",
        "\r\n",
        "  # remove extra space token\r\n",
        "  tokens.pop(-1)\r\n",
        "  return tokens\r\n",
        "\r\n",
        "def dict_detokenize(tokens, vocabulary):\r\n",
        "  text = \"\"\r\n",
        "  reverse_vocab = {v: k for k, v in vocabulary.items()}\r\n",
        "  for token in tokens:\r\n",
        "    if token in reverse_vocab:\r\n",
        "      text = text + reverse_vocab[token]\r\n",
        "    else:\r\n",
        "      text = text + \"\".join(token)\r\n",
        "  return text"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "STIeESPQUj0h"
      },
      "source": [
        "First, we need to build a vocabulary for this tokenizer. It will contain all the lower case English characters, space, and a few whole words for simplicity."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "rone69s8Ui3q"
      },
      "source": [
        "vocabulary = {chr(i + ord(\"a\")) : (i + 1) for i in range(26)}\r\n",
        "# add whole words and special tokens\r\n",
        "vocabulary[\" \"] = 0\r\n",
        "vocabulary[\"hello\"] = len(vocabulary) + 1\r\n",
        "vocabulary[\"today\"] = len(vocabulary) + 1\r\n",
        "vocabulary[\"good\"] = len(vocabulary) + 1\r\n",
        "print(vocabulary)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "sGLGaLtXUgrN"
      },
      "source": [
        "dict_tokens = dict_tokenize(TEXT_CORPUS[0], vocabulary)\r\n",
        "print(\"Tokenized tokens :\", dict_tokens)\r\n",
        "text = dict_detokenize(dict_tokens, vocabulary)\r\n",
        "print(\"Detokenized text :\", text)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "rUETSbM-XYUl"
      },
      "source": [
        "------\r\n",
        "Great! Our dictionary tokenizer works well and tokenizes-detokenizes the data correctly.\r\n",
        "\r\n",
        "You might be wondering - why did we have to go through all this trouble to tokenize and detokenize data if we get back the same thing?\r\n",
        "\r\n",
        "For ASR - the hidden benefit lies in the length of the tokenized representation!"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "eZFGuLqUVhLW"
      },
      "source": [
        "print(\"Character tokenization length -\", len(char_tokens))\r\n",
        "print(\"Dict tokenization length -\", len(dict_tokens))"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vw6jJD8eYJpK"
      },
      "source": [
        "By having the whole word \"hello\" in our tokenizer's dictionary, we could reduce the length of the tokenized data by four tokens and still represent the same information!\r\n",
        "\r\n",
        "Actual subword algorithms like the ones discussed above go several steps further - they partition whole words based on occurrence in text and build tokens for them too! So instead of wasting 5 tokens for `[\"h\", \"e\", \"l\", \"l\", \"o\"]`, we can represent it as `[\"hel##\", \"##lo\"]` and then merge the `##` tokens together to get back `hello` by using just 2 tokens !"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hcCbVA3GY-TZ"
      },
      "source": [
        "## The necessity of subword tokenization\r\n",
        "\r\n",
        "It has been found via extensive research in the domain of Neural Machine Translation and Language Modelling (and its variants), that subword tokenization not only reduces the length of the tokenized representation (thereby making sentences shorter and more manageable for models to learn), but also boosts the accuracy of prediction of correct tokens (refer to the earlier cited papers).\r\n",
        "\r\n",
        "You might remember that earlier; we mentioned subword tokenization as a <i>necessity</i> rather than just a nice-to-have component for ASR. In the previous tutorial, we used the [Connectionist Temporal Classification](https://www.cs.toronto.edu/~graves/icml_2006.pdf) loss function to train the model, but this loss function has a few limitations- \r\n",
        "\r\n",
        " - **Generated tokens are conditionally independent of each other**. In other words - the probability of character \"l\" being predicted after \"hel##\" is conditionally independent of the previous token - so any other token can also be predicted unless the model has future information!\r\n",
        " - **The length of the generated (target) sequence must be shorter than that of the source sequence.** \r\n",
        "\r\n",
        "------\r\n",
        "\r\n",
        "It turns out - subword tokenization helps alleviate both of these issues!\r\n",
        "\r\n",
        " - Sophisticated subword tokenization algorithms build their vocabularies based on large text corpora. To accurately tokenize such large volumes of text with minimal vocabulary size, the subwords that are learned inherently model the interdependency between tokens of that language to some degree. \r\n",
        " \r\n",
        "Looking at the previous example, the token `hel##` is a single token that represents the relationship `h` => `e` => `l`. When the model predicts the singe token `hel##`, it implicitly predicts this relationship - even though the subsequent token can be either `l` (for `hell`) or `##lo` (for `hello`) and is predicted independently of the previous token!\r\n",
        "\r\n",
        " - By reducing the target sentence length by subword tokenization (target sentence here being the characters/subwords transcribed from the audio signal), we entirely sidestep the sequence length limitation of CTC loss!\r\n",
        "\r\n",
        "This means we can perform a larger number of pooling steps in our acoustic models, thereby improving execution speed while simultaneously reducing memory requirements."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "KAFSGJRAeTe6"
      },
      "source": [
        "# Building a custom subword tokenizer\r\n",
        "\r\n",
        "After all that talk about subword tokenization, let's finally build a custom tokenizer for our ASR model! While the `AN4` dataset is simple enough to be trained using character-based models, its small size is also perfect for a demonstration on a notebook."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ire6cSmEe2GU"
      },
      "source": [
        "## Preparing the dataset (AN4)\r\n",
        "\r\n",
        "The AN4 dataset, also known as the Alphanumeric dataset, was collected and published by Carnegie Mellon University. It consists of recordings of people spelling out addresses, names, telephone numbers, etc., one letter or number at a time, and their corresponding transcripts. We choose to use AN4 for this tutorial because it is relatively small, with 948 training and 130 test utterances, and so it trains quickly.\r\n",
        "\r\n",
        "Before we get started, let's download and prepare the dataset. The utterances are available as `.sph` files, so we will need to convert them to `.wav` for later processing. If you are not using Google Colab, please make sure you have [Sox](http://sox.sourceforge.net/) installed for this step--see the \"Downloads\" section of the linked Sox homepage. (If you are using Google Colab, Sox should have already been installed in the setup cell at the beginning.)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "dLB_KedzYHCw"
      },
      "source": [
        "# This is where the an4/ directory will be placed.\n",
        "# Change this if you don't want the data to be extracted in the current directory.\n",
        "# The directory should exist.\n",
        "data_dir = \".\""
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "AsHdRslhe-7W"
      },
      "source": [
        "import glob\r\n",
        "import os\r\n",
        "import subprocess\r\n",
        "import tarfile\r\n",
        "import wget\r\n",
        "\r\n",
        "# Download the dataset. This will take a few moments...\r\n",
        "print(\"******\")\r\n",
        "if not os.path.exists(data_dir + '/an4_sphere.tar.gz'):\r\n",
        "    an4_url = 'https://dldata-public.s3.us-east-2.amazonaws.com/an4_sphere.tar.gz'  # for the original source, please visit http://www.speech.cs.cmu.edu/databases/an4/an4_sphere.tar.gz \r\n",
        "    an4_path = wget.download(an4_url, data_dir)\r\n",
        "    print(f\"Dataset downloaded at: {an4_path}\")\r\n",
        "else:\r\n",
        "    print(\"Tarfile already exists.\")\r\n",
        "    an4_path = data_dir + '/an4_sphere.tar.gz'\r\n",
        "\r\n",
        "if not os.path.exists(data_dir + '/an4/'):\r\n",
        "    # Untar and convert .sph to .wav (using sox)\r\n",
        "    tar = tarfile.open(an4_path)\r\n",
        "    tar.extractall(path=data_dir)\r\n",
        "\r\n",
        "    print(\"Converting .sph to .wav...\")\r\n",
        "    sph_list = glob.glob(data_dir + '/an4/**/*.sph', recursive=True)\r\n",
        "    for sph_path in sph_list:\r\n",
        "        wav_path = sph_path[:-4] + '.wav'\r\n",
        "        cmd = [\"sox\", sph_path, wav_path]\r\n",
        "        subprocess.run(cmd)\r\n",
        "print(\"Finished conversion.\\n******\")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6kOuy-OWfUWn"
      },
      "source": [
        "You should now have a folder called `an4` that contains `etc/an4_train.transcription`, `etc/an4_test.transcription`, audio files in `wav/an4_clstk` and `wav/an4test_clstk`, along with some other files we will not need.\r\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "S2S--I3kftF0"
      },
      "source": [
        "## Creating Data Manifests\r\n",
        "\r\n",
        "The first thing we need to do now is to create manifests for our training and evaluation data, which will contain the metadata of our audio files. NeMo data sets take in a standardized manifest format where each line corresponds to one sample of audio, such that the number of lines in a manifest is equal to the number of samples that are represented by that manifest. A line must contain the path to an audio file, the corresponding transcript (or path to a transcript file), and the duration of the audio sample.\r\n",
        "\r\n",
        "Here's an example of what one line in a NeMo-compatible manifest might look like:\r\n",
        "```\r\n",
        "{\"audio_filepath\": \"path/to/audio.wav\", \"duration\": 3.45, \"text\": \"this is a nemo tutorial\"}\r\n",
        "```\r\n",
        "\r\n",
        "We can build our training and evaluation manifests using `an4/etc/an4_train.transcription` and `an4/etc/an4_test.transcription`, which have lines containing transcripts and their corresponding audio file IDs:\r\n",
        "```\r\n",
        "...\r\n",
        "<s> P I T T S B U R G H </s> (cen5-fash-b)\r\n",
        "<s> TWO SIX EIGHT FOUR FOUR ONE EIGHT </s> (cen7-fash-b)\r\n",
        "...\r\n",
        "```"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "sFyGsk80fRp7"
      },
      "source": [
        "# --- Building Manifest Files --- #\r\n",
        "import json\r\n",
        "import librosa\r\n",
        "\r\n",
        "# Function to build a manifest\r\n",
        "def build_manifest(transcripts_path, manifest_path, wav_path):\r\n",
        "    with open(transcripts_path, 'r') as fin:\r\n",
        "        with open(manifest_path, 'w') as fout:\r\n",
        "            for line in fin:\r\n",
        "                # Lines look like this:\r\n",
        "                # <s> transcript </s> (fileID)\r\n",
        "                transcript = line[: line.find('(')-1].lower()\r\n",
        "                transcript = transcript.replace('<s>', '').replace('</s>', '')\r\n",
        "                transcript = transcript.strip()\r\n",
        "\r\n",
        "                file_id = line[line.find('(')+1 : -2]  # e.g. \"cen4-fash-b\"\r\n",
        "                audio_path = os.path.join(\r\n",
        "                    data_dir, wav_path,\r\n",
        "                    file_id[file_id.find('-')+1 : file_id.rfind('-')],\r\n",
        "                    file_id + '.wav')\r\n",
        "\r\n",
        "                duration = librosa.core.get_duration(filename=audio_path)\r\n",
        "\r\n",
        "                # Write the metadata to the manifest\r\n",
        "                metadata = {\r\n",
        "                    \"audio_filepath\": audio_path,\r\n",
        "                    \"duration\": duration,\r\n",
        "                    \"text\": transcript\r\n",
        "                }\r\n",
        "                json.dump(metadata, fout)\r\n",
        "                fout.write('\\n')\r\n",
        "                \r\n",
        "# Building Manifests\r\n",
        "print(\"******\")\r\n",
        "train_transcripts = data_dir + '/an4/etc/an4_train.transcription'\r\n",
        "train_manifest = data_dir + '/an4/train_manifest.json'\r\n",
        "if not os.path.isfile(train_manifest):\r\n",
        "    build_manifest(train_transcripts, train_manifest, 'an4/wav/an4_clstk')\r\n",
        "    print(\"Training manifest created.\")\r\n",
        "\r\n",
        "test_transcripts = data_dir + '/an4/etc/an4_test.transcription'\r\n",
        "test_manifest = data_dir + '/an4/test_manifest.json'\r\n",
        "if not os.path.isfile(test_manifest):\r\n",
        "    build_manifest(test_transcripts, test_manifest, 'an4/wav/an4test_clstk')\r\n",
        "    print(\"Test manifest created.\")\r\n",
        "print(\"***Done***\")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "gCRjbu5igERH"
      },
      "source": [
        "Let's look at a few files from this manifest - "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "PSv_wZTQf50U"
      },
      "source": [
        "!head -n 5 {data_dir}/an4/train_manifest.json"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "3S80tsTHhDmU"
      },
      "source": [
        "## Build a custom tokenizer\r\n",
        "\r\n",
        "Next, we will use a NeMo script to easily build a tokenizer for the above dataset. The script takes a few arguments, which will be explained in detail.\r\n",
        "\r\n",
        "First, download the tokenizer creation script from the nemo repository."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "ESHI2piTgJRO"
      },
      "source": [
        "if not os.path.exists(\"scripts/tokenizers/process_asr_text_tokenizer.py\"):\n",
        "  !mkdir scripts\n",
        "  !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/tokenizers/process_asr_text_tokenizer.py"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BkcpeYp1iIsU"
      },
      "source": [
        "The script above takes a few important arguments -\r\n",
        "\r\n",
        " - either `--manifest` or `--data_file`: If your text data lies inside of an ASR manifest file, then use the `--manifest` path. If instead the text data is inside a file with separate lines corresponding to different text lines, then use `--data_file`. In either case, you can add commas to concatenate different manifests or different data files.\r\n",
        "\r\n",
        " - `--data_root`: The output directory (whose subdirectories will be created if not present) where the tokenizers will be placed.\r\n",
        "\r\n",
        " - `--vocab_size`: The size of the tokenizer vocabulary. Larger vocabularies can accommodate almost entire words, but the decoder size of any model will grow proportionally.\r\n",
        "\r\n",
        " - `--tokenizer`: Can be either `spe` or  `wpe` . `spe` refers to the Google `sentencepiece` library tokenizer. `wpe` refers to the HuggingFace BERT Word Piece tokenizer. Please refer to the papers above for the relevant technique in order to select an appropriate tokenizer.\r\n",
        "\r\n",
        " - `--no_lower_case`: When this flag is passed, it will force the tokenizer to create separate tokens for upper and lower case characters. By default, the script will turn all the text to lower case before tokenization (and if upper case characters are passed during training/inference, the tokenizer will emit a token equivalent to Out-Of-Vocabulary). Used primarily for the English language. \r\n",
        "\r\n",
        " - `--spe_type`: The `sentencepiece` library has a few implementations of the tokenization technique, and `spe_type` refers to these implementations. Currently supported types are `unigram`, `bpe`, `char`, `word`. Defaults to `bpe`.\r\n",
        "\r\n",
        " - `--spe_character_coverage`: The `sentencepiece` library considers how much of the original vocabulary it should cover in its \"base set\" of tokens (akin to the lower and upper case characters of the English language). For almost all languages with small base token sets `(<1000 tokens)`, this should be kept at its default of 1.0. For languages with larger vocabularies (say Japanese, Mandarin, Korean etc), the suggested value is 0.9995.\r\n",
        "\r\n",
        " - `--spe_sample_size`: If the dataset is too large, consider using a sampled dataset indicated by a positive integer. By default, any negative value (default = -1) will use the entire dataset.\r\n",
        "\r\n",
        " - `--spe_train_extremely_large_corpus`: When training a sentencepiece tokenizer on very large amounts of text, sometimes the tokenizer will run out of memory or wont be able to process so much data on RAM. At some point you might receive the following error - \"Input corpus too large, try with train_extremely_large_corpus=true\". If your machine has large amounts of RAM, it might still be possible to build the tokenizer using the above flag. Will silently fail if it runs out of RAM.\r\n",
        "\r\n",
        " - `--log`: Whether the script should display log messages"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "mAw4WMqbh6ii"
      },
      "source": [
        "!python ./scripts/process_asr_text_tokenizer.py \\\n",
        "  --manifest=\"{data_dir}/an4/train_manifest.json\" \\\n",
        "  --data_root=\"{data_dir}/tokenizers/an4/\" \\\n",
        "  --vocab_size=32 \\\n",
        "  --tokenizer=\"spe\" \\\n",
        "  --no_lower_case \\\n",
        "  --spe_type=\"unigram\" \\\n",
        "  --log"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "gaIFIKgol-p2"
      },
      "source": [
        "-----\r\n",
        "\r\n",
        "That's it! Our tokenizer is now built and stored inside the `data_root` directory that we provided to the script.\r\n",
        "\r\n",
        "First we start by inspecting the tokenizer vocabulary itself. To keep it manageable, we will print just the first 10 tokens of the vocabulary:"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "0A9fSpr4l58u"
      },
      "source": [
        "!head -n 10 {data_dir}/tokenizers/an4/tokenizer_spe_unigram_v32/vocab.txt"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "kPuyTHGTm8Q-"
      },
      "source": [
        "# Training an ASR Model with subword tokenization\r\n",
        "\r\n",
        "Now that our tokenizer is built, let's begin constructing an ASR model that will use this tokenizer for its dataset pre-processing and post-processing steps.\r\n",
        "\r\n",
        "We will use a Citrinet model to demonstrate the usage of subword tokenization models for training and inference. Citrinet is a [QuartzNet-like architecture](https://arxiv.org/abs/1910.10261), but it uses subword-tokenization along with 8x subsampling and [Squeeze-and-Excitation](https://arxiv.org/abs/1709.01507) to achieve strong accuracy in transcriptions while still using non-autoregressive decoding for efficient inference.\r\n",
        "\r\n",
        "We'll be using the **Neural Modules (NeMo) toolkit** for this part, so if you haven't already, you should download and install NeMo and its dependencies. To do so, just follow the directions on the [GitHub page](https://github.com/NVIDIA/NeMo), or in the [documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/).\r\n",
        "\r\n",
        "NeMo let us easily hook together the components (modules) of our model, such as the data layer, intermediate layers, and various losses, without worrying too much about implementation details of individual parts or connections between modules. NeMo also comes with complete models which only require your data and hyperparameters for training."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "jALgpGLjmaCw"
      },
      "source": [
        "# NeMo's \"core\" package\r\n",
        "import nemo\r\n",
        "# NeMo's ASR collection - this collections contains complete ASR models and\r\n",
        "# building blocks (modules) for ASR\r\n",
        "import nemo.collections.asr as nemo_asr"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "msxCiR8epEZu"
      },
      "source": [
        "## Training from scratch\r\n",
        "\r\n",
        "To train from scratch, you need to prepare your training data in the right format and specify your models architecture."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "PasvgSEwpWXd"
      },
      "source": [
        "### Specifying Our Model with a YAML Config File\r\n",
        "\r\n",
        "We'll build a *Citrinet* model for this tutorial and use *greedy CTC decoder*, using the configuration found in `./configs/citrinet_bpe.yaml`.\r\n",
        "\r\n",
        "If we open up this config file, we find model section which describes architecture of our model. A model contains an entry labeled `encoder`, with a field called `jasper` that contains a list with multiple entries. Each of the members in this list specifies one block in our model, and looks something like this:\r\n",
        "```\r\n",
        "- filters: 192\r\n",
        "  repeat: 5\r\n",
        "  kernel: [11]\r\n",
        "  stride: [1]\r\n",
        "  dilation: [1]\r\n",
        "  dropout: 0.0\r\n",
        "  residual: false\r\n",
        "  separable: true\r\n",
        "  se: true\r\n",
        "  se_context_size: -1\r\n",
        "```\r\n",
        "The first member of the list corresponds to the first block in the QuartzNet/Citrinet architecture diagram. \r\n",
        "\r\n",
        "Some entries at the top of the file specify how we will handle training (`train_ds`) and validation (`validation_ds`) data.\r\n",
        "\r\n",
        "Using a YAML config such as this helps get a quick and human-readable overview of what your architecture looks like, and allows you to swap out model and run configurations easily without needing to change your code."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "XLUDyWOmo8xZ"
      },
      "source": [
        "from omegaconf import OmegaConf, open_dict"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "p1O8JRk1qXX9"
      },
      "source": [
        "params = OmegaConf.load(\"./configs/config_bpe.yaml\")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "dHImcuu9qnBl"
      },
      "source": [
        "Let us make the network smaller since `AN4` is a particularly small dataset and does not need the capacity of the general config."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "raXzemtIqjL-"
      },
      "source": [
        "print(OmegaConf.to_yaml(params))"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Nw-8epOcuCcG"
      },
      "source": [
        "## Specifying the tokenizer to the model\r\n",
        "\r\n",
        "Now that we have a model config, we are almost ready to train it ! We just have to inform it where the tokenizer directory exists and it will do the rest for us !\r\n",
        "\r\n",
        "We have to provide just two pieces of information via the config:\r\n",
        "\r\n",
        " - `tokenizer.dir`: The directory where the tokenizer files are stored\r\n",
        " - `tokenizer.type`: Can be `bpe` (for `sentencepiece` based tokenizers) or `wpe` (for HuggingFace based BERT Word Piece Tokenizers. Represents what type of tokenizer is being supplied and parse its directory to construct the actual tokenizer.\r\n",
        "\r\n",
        "**Note**: We only have to provide the **directory** where the tokenizer file exists along with its vocabulary and any other essential components. We pass the directory instead of an explicit vocabulary path, since not all libraries construct their tokenizer in the same manner, so the model will figure out how it should prepare the tokenizer.\r\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "YME-v0rcudUz"
      },
      "source": [
        "params.model.tokenizer.dir = data_dir + \"/tokenizers/an4/tokenizer_spe_unigram_v32/\"  # note this is a directory, not a path to a vocabulary file\r\n",
        "params.model.tokenizer.type = \"bpe\""
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ceelkfIHrHTR"
      },
      "source": [
        "### Training with PyTorch Lightning\r\n",
        "\r\n",
        "NeMo models and modules can be used in any PyTorch code where torch.nn.Module is expected.\r\n",
        "\r\n",
        "However, NeMo's models are based on [PytorchLightning's](https://github.com/PyTorchLightning/pytorch-lightning) LightningModule and we recommend you use PytorchLightning for training and fine-tuning as it makes using mixed precision and distributed training very easy. So to start, let's create Trainer instance for training on GPU for 50 epochs"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "3rslHEKeq9qy"
      },
      "source": [
        "import pytorch_lightning as pl\r\n",
        "trainer = pl.Trainer(devices=1, accelerator='gpu', max_epochs=50)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "pLbXg1swre_M"
      },
      "source": [
        "Next, we instantiate and ASR model based on our ``citrinet_bpe.yaml`` file from the previous section.\r\n",
        "Note that this is a stage during which we also tell the model where our training and validation manifests are."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "v7RnwRpprb2S"
      },
      "source": [
        "# Update paths to dataset\r\n",
        "params.model.train_ds.manifest_filepath = train_manifest\r\n",
        "params.model.validation_ds.manifest_filepath = test_manifest\r\n",
        "\r\n",
        "# remove spec augment for this dataset\r\n",
        "params.model.spec_augment.rect_masks = 0"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2qLDHHOOx8T1"
      },
      "source": [
        "Note the subtle difference in the model that we instantiate - `EncDecCTCModelBPE` instead of `EncDecCTCModel`. \r\n",
        "\r\n",
        "`EncDecCTCModelBPE` is nearly identical to `EncDecCTCModel` (it is in fact a subclass!) that simply adds support for subword tokenization."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "YVNc9IxdwXp7"
      },
      "source": [
        "first_asr_model = nemo_asr.models.EncDecCTCModelBPE(cfg=params.model, trainer=trainer)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "gJd4gE1uzCuO"
      },
      "source": [
        "### Training: Monitoring Progress\r\n",
        "We can  now start Tensorboard to see how training went. Recall that WER stands for Word Error Rate and so the lower it is, the better."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "50qMnqagy8VM"
      },
      "source": [
        "try:\n",
        "  from google import colab\n",
        "  COLAB_ENV = True\n",
        "except (ImportError, ModuleNotFoundError):\n",
        "  COLAB_ENV = False\n",
        "\n",
        "# Load the TensorBoard notebook extension\n",
        "if COLAB_ENV:\n",
        "  %load_ext tensorboard\n",
        "  %tensorboard --logdir lightning_logs/\n",
        "else:\n",
        "  print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "kKZuX5Wavocr"
      },
      "source": [
        "With that, we can start training with just one line!"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "_iFfkFBTryQn"
      },
      "source": [
        "# Start training!!!\r\n",
        "trainer.fit(first_asr_model)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HQ2aSenF90hs"
      },
      "source": [
        "Save the model easily along with the tokenizer using `save_to`. \r\n",
        "\r\n",
        "Later, we use `restore_from` to restore the model, it will also reinitialize the tokenizer !"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "6idt0dfO9z-S"
      },
      "source": [
        "first_asr_model.save_to(\"first_model.nemo\")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "RpHwCTk1-q4t"
      },
      "source": [
        "!ls -l -- *.nemo"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "VIupynXOxODi"
      },
      "source": [
        "There we go! We've put together a full training pipeline for the model and trained it for 50 epochs.\r\n",
        "\r\n",
        "If you'd like to save this model checkpoint for loading later (e.g. for fine-tuning, or for continuing training), you can simply call `first_asr_model.save_to(<checkpoint_path>)`. Then, to restore your weights, you can rebuild the model using the config (let's say you call it `first_asr_model_continued` this time) and call `first_asr_model_continued.restore_from(<checkpoint_path>)`."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "igxnj51WxdSf"
      },
      "source": [
        "We could improve this model by playing with hyperparameters. We can look at the current hyperparameters with the following:"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "wLR7PfEzxbO1"
      },
      "source": [
        "print(params.model.optim)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7wfmZWf-xlNV"
      },
      "source": [
        "### After training and hyper parameter tuning\r\n",
        "\r\n",
        "Let's say we wanted to change the learning rate. To do so, we can create a `new_opt` dict and set our desired learning rate, then call `<model>.setup_optimization()` with the new optimization parameters."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "cH31LyZwxi_p"
      },
      "source": [
        "import copy\r\n",
        "new_opt = copy.deepcopy(params.model.optim)\r\n",
        "new_opt.lr = 0.1\r\n",
        "first_asr_model.setup_optimization(optim_config=new_opt);\r\n",
        "# And then you can invoke trainer.fit(first_asr_model)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "azH7U-K8x0rd"
      },
      "source": [
        "## Inference\r\n",
        "\r\n",
        "Let's have a quick look at how one could run inference with NeMo's ASR model.\r\n",
        "\r\n",
        "First, ``EncDecCTCModelBPE`` and its subclasses contain a handy ``transcribe`` method which can be used to simply obtain audio files' transcriptions. It also has batch_size argument to improve performance."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "O64yk8C4xvTG"
      },
      "source": [
        "print(first_asr_model.transcribe(paths2audio_files=[data_dir + '/an4/wav/an4_clstk/mgah/cen2-mgah-b.wav',\n",
        "                                                    data_dir + '/an4/wav/an4_clstk/fmjd/cen7-fmjd-b.wav',\n",
        "                                                    data_dir + '/an4/wav/an4_clstk/fmjd/cen8-fmjd-b.wav',\n",
        "                                                    data_dir + '/an4/wav/an4_clstk/fkai/cen8-fkai-b.wav'],\n",
        "                                 batch_size=4))"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "sfcfBxIkznU8"
      },
      "source": [
        "Below is an example of a simple inference loop in pure PyTorch. It also shows how one can compute Word Error Rate (WER) metric between predictions and references."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Eo2TcBkozlEG"
      },
      "source": [
        "# Bigger batch-size = bigger throughput\r\n",
        "params['model']['validation_ds']['batch_size'] = 16\r\n",
        "\r\n",
        "# Setup the test data loader and make sure the model is on GPU\r\n",
        "first_asr_model.setup_test_data(test_data_config=params['model']['validation_ds'])\r\n",
        "first_asr_model.cuda()\r\n",
        "first_asr_model.eval()\r\n",
        "\r\n",
        "# We remove some preprocessing artifacts which benefit training\r\n",
        "first_asr_model.preprocessor.featurizer.pad_to = 0\r\n",
        "first_asr_model.preprocessor.featurizer.dither = 0.0\r\n",
        "\r\n",
        "# We will be computing Word Error Rate (WER) metric between our hypothesis and predictions.\r\n",
        "# WER is computed as numerator/denominator.\r\n",
        "# We'll gather all the test batches' numerators and denominators.\r\n",
        "wer_nums = []\r\n",
        "wer_denoms = []\r\n",
        "\r\n",
        "# Loop over all test batches.\r\n",
        "# Iterating over the model's `test_dataloader` will give us:\r\n",
        "# (audio_signal, audio_signal_length, transcript_tokens, transcript_length)\r\n",
        "# See the AudioToCharDataset for more details.\r\n",
        "for test_batch in first_asr_model.test_dataloader():\r\n",
        "        test_batch = [x.cuda() for x in test_batch]\r\n",
        "        targets = test_batch[2]\r\n",
        "        targets_lengths = test_batch[3]        \r\n",
        "        log_probs, encoded_len, greedy_predictions = first_asr_model(\r\n",
        "            input_signal=test_batch[0], input_signal_length=test_batch[1]\r\n",
        "        )\r\n",
        "        # Notice the model has a helper object to compute WER\r\n",
        "        first_asr_model._wer.update(greedy_predictions, targets, targets_lengths)\r\n",
        "        _, wer_num, wer_denom = first_asr_model._wer.compute()\r\n",
        "        wer_nums.append(wer_num.detach().cpu().numpy())\r\n",
        "        wer_denoms.append(wer_denom.detach().cpu().numpy())\r\n",
        "\r\n",
        "# We need to sum all numerators and denominators first. Then divide.\r\n",
        "print(f\"WER = {sum(wer_nums)/sum(wer_denoms)}\")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "T1po9EnY28RM"
      },
      "source": [
        "This WER is not particularly impressive and could be significantly improved. You could train longer (try 100 epochs) to get a better number."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "dtl9vEhx3MG7"
      },
      "source": [
        "## Utilizing the underlying tokenizer\r\n",
        "\r\n",
        "Since the model has an underlying tokenizer, it would be nice to use it externally as well - say for getting the subwords of the transcript or to tokenize a dataset using the same tokenizer as the ASR model."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "fdXg21if2YRp"
      },
      "source": [
        "tokenizer = first_asr_model.tokenizer\r\n",
        "tokenizer"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Y96SOqpJ3kG3"
      },
      "source": [
        "You can get the tokenizer's vocabulary using the `tokenizer.tokenizer.get_vocab()` method. \r\n",
        "\r\n",
        "ASR tokenizers will map the subword to an integer index in the vocabulary for convenience."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "F56_tIRM3g3f"
      },
      "source": [
        "vocab = tokenizer.tokenizer.get_vocab()\r\n",
        "vocab"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "80EqyAfK37-K"
      },
      "source": [
        "You can also tokenize and detokenize some text using this tokenizer, with the same API across all of NeMo."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "-2tMVskF3uUf"
      },
      "source": [
        "tokens = tokenizer.text_to_tokens(\"hello world\")\r\n",
        "tokens"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "CkxHkKQn4Q-E"
      },
      "source": [
        "token_ids = tokenizer.text_to_ids(\"hello world\")\r\n",
        "token_ids"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "tpdoIrRt4Xim"
      },
      "source": [
        "subwords = tokenizer.ids_to_tokens(token_ids)\r\n",
        "subwords"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "wudNyONi4og8"
      },
      "source": [
        "text = tokenizer.ids_to_text(token_ids)\r\n",
        "text"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "E35VBsbf4yWy"
      },
      "source": [
        "## Model Improvements\r\n",
        "\r\n",
        "You already have all you need to create your own ASR model in NeMo, but there are a few more tricks that you can employ if you so desire. In this section, we'll briefly cover a few possibilities for improving an ASR model.\r\n",
        "\r\n",
        "### Data Augmentation\r\n",
        "\r\n",
        "There exist several ASR data augmentation methods that can increase the size of our training set.\r\n",
        "\r\n",
        "For example, we can perform augmentation on the spectrograms by zeroing out specific frequency segments (\"frequency masking\") or time segments (\"time masking\") as described by [SpecAugment](https://arxiv.org/abs/1904.08779), or zero out rectangles on the spectrogram as in [Cutout](https://arxiv.org/pdf/1708.04552.pdf). In NeMo, we can do all three of these by simply adding a `SpectrogramAugmentation` neural module. (As of now, it does not perform the time warping from the SpecAugment paper.)\r\n",
        "\r\n",
        "Our toy model disables spectrogram augmentation, because it is not significantly beneficial for the short demo."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "SMi6Bauy4Jhg"
      },
      "source": [
        "print(OmegaConf.to_yaml(first_asr_model._cfg['spec_augment']))"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ATpO9JDw5MzF"
      },
      "source": [
        "If you want to enable SpecAugment in your model, make sure your .yaml config file contains 'model/spec_augment' section which looks like the one above."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "fDTC4fXZ5QnT"
      },
      "source": [
        "### Transfer learning\r\n",
        "\r\n",
        "Transfer learning is an important machine learning technique that uses a model’s knowledge of one task to perform better on another. Fine-tuning is one of the techniques to perform transfer learning. It is an essential part of the recipe for many state-of-the-art results where a base model is first pretrained on a task with abundant training data and then fine-tuned on different tasks of interest where the training data is less abundant or even scarce.\r\n",
        "\r\n",
        "In ASR you might want to do fine-tuning in multiple scenarios, for example, when you want to improve your model's performance on a particular domain (medical, financial, etc.) or accented speech. You can even transfer learn from one language to another! Check out [this paper](https://arxiv.org/abs/2005.04290) for examples.\r\n",
        "\r\n",
        "Transfer learning with NeMo is simple. Let's demonstrate how we could fine-tune the model we trained earlier on AN4 data. (NOTE: this is a toy example). And, while we are at it, we will change the model's vocabulary to demonstrate how it's done."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IN0LbDbY5YR1"
      },
      "source": [
        "-----\r\n",
        "First, let's create another tokenizer - perhaps using a larger vocabulary size than the small tokenizer we created earlier. Also we swap out `sentencepiece` for `BERT Word Piece` tokenizer."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "LFENXcXw48fc"
      },
      "source": [
        "!python ./scripts/process_asr_text_tokenizer.py \\\n",
        "  --manifest=\"{data_dir}/an4/train_manifest.json\" \\\n",
        "  --data_root=\"{data_dir}/tokenizers/an4/\" \\\n",
        "  --vocab_size=64 \\\n",
        "  --tokenizer=\"wpe\" \\\n",
        "  --no_lower_case \\\n",
        "  --log"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "y5XTyk3M_o7O"
      },
      "source": [
        "Now let's load the previously trained model so that we can fine tune it-"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "QtyAB9fQ_qbj"
      },
      "source": [
        "restored_model = nemo_asr.models.EncDecCTCModelBPE.restore_from(\"./first_model.nemo\")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5BBtk30g5sHJ"
      },
      "source": [
        "Now let's update the vocabulary in this model"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "4Ey9CUkJ5o56"
      },
      "source": [
        "# Check what kind of vocabulary/alphabet the model has right now\n",
        "print(restored_model.decoder.vocabulary)\n",
        "\n",
        "# Lets change the tokenizer vocabulary by passing the path to the new directory,\n",
        "# and also change the type\n",
        "restored_model.change_vocabulary(\n",
        "    new_tokenizer_dir=data_dir + \"/tokenizers/an4/tokenizer_wpe_v64/\",\n",
        "    new_tokenizer_type=\"wpe\"\n",
        ")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "UZ3sf2P26SiA"
      },
      "source": [
        "After this, our decoder has completely changed, but our encoder (where most of the weights are) remained intact. Let's fine tune-this model for 20 epochs on AN4 dataset. We will also use the smaller learning rate from ``new_opt` (see the \"After Training\" section)`.\r\n",
        "\r\n",
        "**Note**: For this demonstration, we will also freeze the encoder to speed up finetuning (since both tokenizers are built on the same train set), but in general it should not be done for proper training on a new language (or on a different corpus than the original train corpus)."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "7m_CRtH46BjO"
      },
      "source": [
        "# Use the smaller learning rate we set before\r\n",
        "restored_model.setup_optimization(optim_config=new_opt)\r\n",
        "\r\n",
        "# Point to the data we'll use for fine-tuning as the training set\r\n",
        "restored_model.setup_training_data(train_data_config=params['model']['train_ds'])\r\n",
        "\r\n",
        "# Point to the new validation data for fine-tuning\r\n",
        "restored_model.setup_validation_data(val_data_config=params['model']['validation_ds'])\r\n",
        "\r\n",
        "# Freeze the encoder layers (should not be done for finetuning, only done for demo)\r\n",
        "restored_model.encoder.freeze()"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "uCmUWZLD63d9"
      },
      "source": [
        "# Load the TensorBoard notebook extension\r\n",
        "if COLAB_ENV:\r\n",
        "  %load_ext tensorboard\r\n",
        "  %tensorboard --logdir lightning_logs/\r\n",
        "else:\r\n",
        "  print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "fs2aK7xB6pAd"
      },
      "source": [
        "# And now we can create a PyTorch Lightning trainer and call `fit` again.\r\n",
        "trainer = pl.Trainer(devices=1, accelerator='gpu', max_epochs=20)\r\n",
        "trainer.fit(restored_model)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "a33WIRR9B_gR"
      },
      "source": [
        "So we get fast convergence even though the decoder vocabulary is double the size and we freeze the encoder."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "alykABQ3CNpf"
      },
      "source": [
        "### Fast Training\r\n",
        "\r\n",
        "Last but not least, we could simply speed up training our model! If you have the resources, you can speed up training by splitting the workload across multiple GPUs. Otherwise (or in addition), there's always mixed precision training, which allows you to increase your batch size.\r\n",
        "\r\n",
        "You can use [PyTorch Lightning's Trainer object](https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html?highlight=Trainer) to handle mixed-precision and distributed training for you. Below are some examples of flags you would pass to the `Trainer` to use these features:\r\n",
        "\r\n",
        "```python\r\n",
        "# Mixed precision:\r\n",
        "trainer = pl.Trainer(amp_level='O1', precision=16)\r\n",
        "\r\n",
        "# Trainer with a distributed backend:\r\n",
        "trainer = pl.Trainer(devices=2, num_nodes=2, accelerator='gpu', strategy='dp')\r\n",
        "\r\n",
        "# Of course, you can combine these flags as well.\r\n",
        "```\r\n",
        "\r\n",
        "Finally, have a look at [example scripts in NeMo repository](https://github.com/NVIDIA/NeMo/blob/stable/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) which can handle mixed precision and distributed training using command-line arguments."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4uQGWtRJDF0O"
      },
      "source": [
        "## Under the Hood\r\n",
        "\r\n",
        "NeMo is open-source and we do all our model development in the open, so you can inspect our code if you wish.\r\n",
        "\r\n",
        "In particular, ``nemo_asr.model.EncDecCTCModelBPE`` is an encoder-decoder model which is constructed using several ``Neural Modules`` taken from ``nemo_asr.modules.`` Here is what its forward pass looks like:\r\n",
        "```python\r\n",
        "def forward(self, input_signal, input_signal_length):\r\n",
        "    processed_signal, processed_signal_len = self.preprocessor(\r\n",
        "        input_signal=input_signal, length=input_signal_length,\r\n",
        "    )\r\n",
        "    # Spec augment is not applied during evaluation/testing\r\n",
        "    if self.spec_augmentation is not None and self.training:\r\n",
        "        processed_signal = self.spec_augmentation(input_spec=processed_signal)\r\n",
        "    encoded, encoded_len = self.encoder(audio_signal=processed_signal, length=processed_signal_len)\r\n",
        "    log_probs = self.decoder(encoder_output=encoded)\r\n",
        "    greedy_predictions = log_probs.argmax(dim=-1, keepdim=False)\r\n",
        "    return log_probs, encoded_len, greedy_predictions\r\n",
        "```\r\n",
        "Here:\r\n",
        "\r\n",
        "* ``self.preprocessor`` is an instance of ``nemo_asr.modules.AudioToMelSpectrogramPreprocessor``, which is a neural module that takes audio signal and converts it into a Mel-Spectrogram\r\n",
        "* ``self.spec_augmentation`` - is a neural module of type ```nemo_asr.modules.SpectrogramAugmentation``, which implements data augmentation. \r\n",
        "* ``self.encoder`` - is a convolutional Jasper, QuartzNet or Citrinet-like encoder of type ``nemo_asr.modules.ConvASREncoder``\r\n",
        "* ``self.decoder`` - is a ``nemo_asr.modules.ConvASRDecoder`` which simply projects into the target alphabet (vocabulary).\r\n",
        "\r\n",
        "Also, ``EncDecCTCModelBPE`` uses the audio dataset class ``nemo_asr.data.AudioToBPEDataset`` and CTC loss implemented in ``nemo_asr.losses.CTCLoss``.\r\n",
        "\r\n",
        "You can use these and other neural modules (or create new ones yourself!) to construct new ASR models."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5kKcSb7LDdI3"
      },
      "source": [
        "# Further Reading/Watching:\r\n",
        "\r\n",
        "That's all for now! If you'd like to learn more about the topics covered in this tutorial, here are some resources that may interest you:\r\n",
        "- [Stanford Lecture on ASR](https://www.youtube.com/watch?v=3MjIkWxXigM)\r\n",
        "- [\"An Intuitive Explanation of Connectionist Temporal Classification\"](https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c)\r\n",
        "- [Explanation of CTC with Prefix Beam Search](https://medium.com/corti-ai/ctc-networks-and-language-models-prefix-beam-search-explained-c11d1ee23306)\r\n",
        "- [Byte Pair Encoding](https://arxiv.org/abs/1508.07909)\r\n",
        "- [Word Piece Encoding](https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf)\r\n",
        "- [SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing](https://www.aclweb.org/anthology/D18-2012/)\r\n",
        "- [Jasper Paper](https://arxiv.org/abs/1904.03288)\r\n",
        "- [QuartzNet paper](https://arxiv.org/abs/1910.10261)\r\n",
        "- [SpecAugment Paper](https://arxiv.org/abs/1904.08779)\r\n",
        "- [Explanation and visualization of SpecAugment](https://towardsdatascience.com/state-of-the-art-audio-data-augmentation-with-google-brains-specaugment-and-pytorch-d3d1a3ce291e)\r\n",
        "- [Cutout Paper](https://arxiv.org/pdf/1708.04552.pdf)\r\n",
        "- [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507)\r\n",
        "- [Transfer Learning Blogpost](https://developer.nvidia.com/blog/jump-start-training-for-speech-recognition-models-with-nemo/)"
      ]
    }
  ]
}