File size: 80,800 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "ASR_CTC_Language_Finetuning.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "code",
"metadata": {
"id": "EGV_ioUHqhun"
},
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\"\"\"\n",
"\n",
"# Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg libsox-fmt-mp3\n",
"!pip install text-unidecode\n",
"!pip install matplotlib>=3.3.2\n",
"\n",
"## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
"\n",
"\"\"\"\n",
"Remember to restart the runtime for the kernel to pick up any upgraded packages (e.g. matplotlib)!\n",
"Alternatively, you can uncomment the exit() below to crash and restart the kernel, in the case\n",
"that you want to use the \"Run All Cells\" (or similar) option.\n",
"\"\"\"\n",
"# exit()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "0BbhwsxphhBS"
},
"source": [
"# Finetuning CTC models on other languages\n",
"\n",
"In previous tutorials, we have seen a few ways to restore an ASR model, set up the data loaders, and then either train from scratch or fine-tune the model on a small dataset. In this tutorial, we extend previous tutorials and discuss in detail how to * fine-tune a pre-trained model onto a new language*. While many of the concepts are similar to previous tutorials, this tutorial will dive deeper into essential steps. Namely,\n",
"\n",
" - Data preprocessing\n",
" - Prepare tokenizers\n",
" - Discuss how to fine-tune models on low-resource languages efficiently\n",
" - Train a character encoding CTC model\n",
" - Train a sub-word encoding CTC model\n",
"\n",
"For this tutorial (and limited by the compute and storage available on Colab environments), we will attempt to fine-tune an English ASR model onto the [Mozilla Common Voice](https://commonvoice.mozilla.org/en) dataset for Japanese. This dataset will also allow us to discuss a few details for fine-tuning low-resource languages. The methods discussed here can also be applied to languages with several thousand hours of data!\n",
"\n",
"**Note**: It is advised to review the execution flow diagram for ASR models in order to correctly setup the model prior to fine-tuning - [ASR CTC Examples](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/README.md)\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "1cjMaek4rY8-"
},
"source": [
"import os\n",
"import glob\n",
"import subprocess\n",
"import tarfile\n",
"import wget\n",
"import copy\n",
"from omegaconf import OmegaConf, open_dict"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "8wqTRjpNruZD"
},
"source": [
"data_dir = 'datasets/'\n",
"\n",
"if not os.path.exists(data_dir):\n",
" os.makedirs(data_dir, exist_ok=True)\n",
"\n",
"if not os.path.exists(\"scripts\"):\n",
" os.makedirs(\"scripts\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "TSTb6b5DriWG"
},
"source": [
"import nemo\n",
"import nemo.collections.asr as nemo_asr\n",
"from nemo.collections.asr.metrics.wer import word_error_rate\n",
"from nemo.utils import logging, exp_manager"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "wZWtgy_C7bAK"
},
"source": [
"# Download dataset\n",
"\n",
"We will use the NeMo script in the scripts directory to download and prepare the [Mozilla Common Voice (MCV)](https://commonvoice.mozilla.org/en) dataset for Japanese.\n",
"\n",
"The data preparation script will download the audio files and respective transcripts and then process the audio into mono-channel 16 kHz wave files that can be easily used for training ASR models.\n",
"\n",
"Why did we pick Japanese? Currently, the MCV Japanese dataset is tiny - a mere 2.5 hours of transcribed speech in total. Even when we combine the train and dev split to use for training, that amounts to less than 2 hours of transcribed speech. In addition to this, the Japanese vocabulary is massive, easily comprising several thousand unique tokens used in common vernacular. Compared to English, which has a mere 26 lower case characters as its alphabet, it imposes unique challenges when fine-tuning a model."
]
},
{
"cell_type": "code",
"metadata": {
"id": "27h1i8qa7WFE"
},
"source": [
"if not os.path.exists(\"scripts/get_commonvoice_data.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/dataset_processing/get_commonvoice_data.py"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "x0i8hvt688hc"
},
"source": [
"VERSION = \"cv-corpus-6.1-2020-12-11\"\n",
"LANGUAGE = \"ja\""
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "-wI16qY_misb"
},
"source": [
"tokenizer_dir = os.path.join('tokenizers', LANGUAGE)\n",
"manifest_dir = os.path.join('manifests', LANGUAGE)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "bvOT_La2NNw1"
},
"source": [
"# If something goes wrong during data processing, un-comment the following line to delete the cached dataset \n",
"# !rm -rf datasets/$LANGUAGE\n",
"!mkdir -p datasets"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "EI26O-4HpdFD"
},
"source": [
"The following cell will download the Japanese MCV corpus, preprocess the audio and prepare manifest files that can be directly used by NeMo models."
]
},
{
"cell_type": "code",
"metadata": {
"id": "Inwx4OE97guu"
},
"source": [
"!python scripts/get_commonvoice_data.py \\\n",
" --data_root \"datasets/$LANGUAGE/\" \\\n",
" --manifest_dir=$manifest_dir \\\n",
" --sample_rate=16000 \\\n",
" --n_channels=1 \\\n",
" --version=$VERSION \\\n",
" --language=$LANGUAGE \\\n",
" --files_to_process 'train.tsv' 'dev.tsv' 'test.tsv'"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "FYw2sHWtOh3x"
},
"source": [
"Now that the dataset has been downloaded, let's prepare some paths to easily access the manifest files for the train, dev, and test partitions."
]
},
{
"cell_type": "code",
"metadata": {
"id": "j7WAGLX59C26"
},
"source": [
"train_manifest = f\"{manifest_dir}/commonvoice_train_manifest.json\"\n",
"dev_manifest = f\"{manifest_dir}/commonvoice_dev_manifest.json\"\n",
"test_manifest = f\"{manifest_dir}/commonvoice_test_manifest.json\""
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "5_LhoUuDrmHb"
},
"source": [
"# Preparing the dataset for training\n",
"\n",
"Before we start training the model on the above unprocessed manifest files, we need to analyze the data. Data pre-processing is perhaps the most essential task, and often requires moderate expertise in the language. \n",
"\n",
"While we could technically use the manifests above to train a model, the results would potentially be abysmal. Let's dive a little deeper into what challenges this dataset poses to our models.\n",
"\n",
"**Note**: The pre-processing done on this corpus is specifically done to reduce ambiguity in transcripts, due to the minuscule amount of data we possess. Given enough data, the models discussed here could potentially learn well, even without such heavy pre-processing."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "txKWXZLbrUsU"
},
"source": [
"## Manifest utilities\n",
"\n",
"First, we construct some utilities to read and write manifest files"
]
},
{
"cell_type": "code",
"metadata": {
"id": "EdkJYxUirp7C"
},
"source": [
"# Manifest Utils\n",
"from tqdm.auto import tqdm\n",
"from nemo.collections.asr.parts.utils.manifest_utils import read_manifest, write_manifest\n",
"import json\n",
"\n",
"\n",
"def write_processed_manifest(data, original_path):\n",
" original_manifest_name = os.path.basename(original_path)\n",
" new_manifest_name = original_manifest_name.replace(\".json\", \"_processed.json\")\n",
"\n",
" manifest_dir = os.path.split(original_path)[0]\n",
" filepath = os.path.join(manifest_dir, new_manifest_name)\n",
" write_manifest(filepath, data)\n",
" print(f\"Finished writing manifest: {filepath}\")\n",
" return filepath"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "HngfzcwOijy4"
},
"source": [
"train_manifest_data = read_manifest(train_manifest)\n",
"dev_manifest_data = read_manifest(dev_manifest)\n",
"test_manifest_data = read_manifest(test_manifest)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "thrTwcCVra2N"
},
"source": [
"Next, we extract just the text corpus from the manifest."
]
},
{
"cell_type": "code",
"metadata": {
"id": "T2iwnvhXimfG"
},
"source": [
"train_text = [data['text'] for data in train_manifest_data]\n",
"dev_text = [data['text'] for data in dev_manifest_data]\n",
"test_text = [data['text'] for data in test_manifest_data]"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "4fDoQQwyrhkV"
},
"source": [
"## Character set\n",
"\n",
"Let us calculate the character set - which is the set of unique tokens that exist within the text manifests."
]
},
{
"cell_type": "code",
"metadata": {
"id": "XpUb_pI5imhh"
},
"source": [
"from collections import defaultdict\n",
"\n",
"def get_charset(manifest_data):\n",
" charset = defaultdict(int)\n",
" for row in tqdm(manifest_data, desc=\"Computing character set\"):\n",
" text = row['text']\n",
" for character in text:\n",
" charset[character] += 1\n",
" return charset"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "obcPlrOJimju"
},
"source": [
"train_charset = get_charset(train_manifest_data)\n",
"dev_charset = get_charset(dev_manifest_data)\n",
"test_charset = get_charset(test_manifest_data)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "yWmf3aNYi7on"
},
"source": [
"Count the number of unique tokens that exist within this dataset"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Z8QVdph6imlz"
},
"source": [
"train_dev_set = set.union(set(train_charset.keys()), set(dev_charset.keys()))\n",
"test_set = set(test_charset.keys())"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "NgCfETWNimn3"
},
"source": [
"print(f\"Number of tokens in train+dev set : {len(train_dev_set)}\")\n",
"print(f\"Number of tokens in test set : {len(test_set)}\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Q0yLTrdEsPr1"
},
"source": [
"## Japanese Vocabulary\n",
"\n",
"Even a tiny corpus, with less than 2 hours of speech, comprises nearly 1250 unique tokens! Such large vocabulary is quite common in several languages such as Japanese and Mandarin, which have a vast number of tokens in their vocabulary.\n",
"\n",
"However, it is interesting to note that not all tokens occur as commonly as others. Take, for example, *Hiragana* and *Katakana* that are widely used in Japan.\n",
"\n",
" - Hiragana: 46 base characters\n",
" - Katakana: 46 base characters\n",
"\n",
"Hiragana and Katana also have *diacritics* called [*dakuten*](https://en.wikipedia.org/wiki/Dakuten_and_handakuten), which change the overall pronunciation of certain hiragana and katakana tokens (and often change the meaning). Including the *dakuten* alongside the base character sets, both hiragana and katakana comprise **71** tokens each.\n",
"\n",
"In essence, a small number of tokens could possibly be used to transcribe a significant chunk of Japanese text read and written. However, even though Hiragana and Katakana share nearly the same number of tokens, hiragana is used far more often. Both combined still account for just 40-45% of all written text. [Reference](https://en.wikipedia.org/wiki/Japanese_writing_system)\n",
"\n",
" -------\n",
"\n",
"In common vernacular, there are many concepts and words which simply cannot be represented by any set of hiragana and katakana, and in such cases, kanji is used. In reality, while there exists more than 20,000 kanji in circulation, just 2000 of the most common kanji is generally sufficient to represent Japanese text.\n",
"\n",
"The widespread use of kanji also means that the \"minimum\" character set for modern Japanese is *at least 2500 tokens*. That is quite a bit larger than the source language - English with its 26 lower case tokens.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QWfJJHefjGbS"
},
"source": [
"## Count number of Out-Of-Vocabulary tokens in the test set\n",
"\n",
"Given such a vast number of tokens exist in the train and dev set, lets make sure that there are no outlier tokens in the test set (remember: the number of kanji used regularly is roughly more than 2000 tokens!)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "KPrBi35Cimqc"
},
"source": [
"# OOV tokens in test set\n",
"train_test_common = set.intersection(train_dev_set, test_set)\n",
"test_oov = test_set - train_test_common\n",
"print(f\"Number of OOV tokens in test set : {len(test_oov)}\")\n",
"print()\n",
"print(test_oov)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "6XQ50MlcyxUQ"
},
"source": [
"So there exists a significant number of kanji that exist only in the test set, but not in the train or dev set. In order to simplify the learning task (and because there is simply too little data), we will remove the unique test set kanji.\n",
"\n",
"**Note**: Removing kanji inevitably means some text cannot be correctly transcribed. In the case of Japanese, this means certain transcriptions will mean entirely different when compared to the spoken audio."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CofkYTA1jLuJ"
},
"source": [
"## Check the distribution of kanji\n",
"\n",
"Next, just as an exercise, we calculate the occurrence ratio of kanji in the train and dev corpus. \n",
"\n",
"Here, `count_keys` represents a dictionary of lists - such that each key is the number of times a token occurred in the entire training corpus, and the value is a list of the kanji that occurred that many times."
]
},
{
"cell_type": "code",
"metadata": {
"id": "VDDiXCiPimr_"
},
"source": [
"# Populate dictionary mapping count: list[tokens]\n",
"train_counts = defaultdict(list)\n",
"for token, count in train_charset.items():\n",
" train_counts[count].append(token)\n",
"for token, count in dev_charset.items():\n",
" train_counts[count].append(token)\n",
"\n",
"# Compute sorter order of the count keys\n",
"count_keys = sorted(list(train_counts.keys()))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "7oni2J47zeE5"
},
"source": [
"Build a paired list that computes the number of unique kanji which occurs less than some `MAX_COUNT` number of times."
]
},
{
"cell_type": "code",
"metadata": {
"id": "TJeVEKvAimwE"
},
"source": [
"MAX_COUNT = 32\n",
"\n",
"TOKEN_COUNT_X = []\n",
"NUM_TOKENS_Y = []\n",
"for count in range(1, MAX_COUNT + 1):\n",
" if count in train_counts:\n",
" num_tokens = len(train_counts[count])\n",
"\n",
" TOKEN_COUNT_X.append(count)\n",
" NUM_TOKENS_Y.append(num_tokens)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "vpTFU9kR0G19"
},
"source": [
"Let's plot the distribution in order of rarity of occurrence. This means that for smaller value in `x` axis (`# of occurrences), the `y` axis value represents the number of unique kanji that occurred exactly `x` number of times in the entire corpus."
]
},
{
"cell_type": "code",
"metadata": {
"id": "rKULANgINqbq"
},
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.bar(x=TOKEN_COUNT_X, height=NUM_TOKENS_Y)\n",
"plt.title(\"Occurance of unique tokens in train+dev set\")\n",
"plt.xlabel(\"# of occurances\")\n",
"plt.ylabel(\"# of tokens\")\n",
"plt.xlim(0, MAX_COUNT);"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "jl_f45x20gys"
},
"source": [
"As we can see above - nearly 700 tokens occur precisely once in the entire training corpus! Let's check a cumulative count of how many unique kanji exist with less than five occurrences throughout the corpus."
]
},
{
"cell_type": "code",
"metadata": {
"id": "9G6laS0ojV-B"
},
"source": [
"UNCOMMON_TOKENS_COUNT = 5\n",
"\n",
"chars_with_infrequent_occurance = set()\n",
"for count in range(1, UNCOMMON_TOKENS_COUNT + 1):\n",
" if count in train_counts:\n",
" token_list = train_counts[count]\n",
" chars_with_infrequent_occurance.update(set(token_list))\n",
"\n",
"print(f\"Number of tokens with <= {UNCOMMON_TOKENS_COUNT} occurances : {len(chars_with_infrequent_occurance)}\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "8gZSbBXZjhXa"
},
"source": [
"## Remove Out-of-Vocabulary tokens from the test set\n",
"\n",
"Previously we counted the set of Out-of-Vocabulary tokens that exist in the test set but not in the train or dev set. Now, let's remove them."
]
},
{
"cell_type": "code",
"metadata": {
"id": "jnh_pnL2jWAY"
},
"source": [
"all_tokens = set.union(train_dev_set, test_set)\n",
"print(f\"Original train+dev+test vocab size : {len(all_tokens)}\")\n",
"\n",
"extra_kanji = set(test_oov)\n",
"train_token_set = all_tokens - extra_kanji\n",
"print(f\"New train vocab size : {len(train_token_set)}\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "1G4go3YdmIVQ"
},
"source": [
"## Process *dakuten*\n",
"\n",
"As mentioned above, Hiragana and Katakana have a base set of just 46 tokens. But by changing the pronunciation of specific tokens, which are denoted by ` ゙` (dakuten) or ` ゚` (handakuten), the meaning of the token changes. As demonstrated in [How to memorize the Hiragana Dakuten](https://en.wikibooks.org/wiki/Memorizing_the_Hiragana/Dakuten):\n",
"\n",
"Normal | With dakuten ( ゙ ) | with handakuten ( ゚ )\n",
"--------|------------------------|----------------------\n",
"か = ka | が = ga |\n",
"さ = sa | ざ = za |\n",
"た = ta | だ = da |\n",
"は = ha | ば = ba | ぱ = pa\n",
"\n",
"Ordinarily, it is essential to capture the acoustic differences between the tokens described by the dakuten. However, the dataset here is so tiny that it would reduce the model's ability to learn and disambiguate between the two types of tokens.\n",
"\n",
"Below, we offer a flag to replace the dakuten and handakuten with the base character set (in exchange for making the transcript incorrect). \n",
"\n",
"**Note**: This option should be set to **False** for any scenario with a reasonable amount of data."
]
},
{
"cell_type": "code",
"metadata": {
"id": "kaX9WzK15Q6t",
"cellView": "form"
},
"source": [
"#@title Dakuten normalization\n",
"perform_dakuten_normalization = True #@param [\"True\", \"False\"] {type:\"raw\"}\n",
"PERFORM_DAKUTEN_NORMALIZATION = bool(perform_dakuten_normalization)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "HiEZVEshOp-y"
},
"source": [
"import unicodedata\n",
"def process_dakuten(text):\n",
" normalized_text = unicodedata.normalize('NFD', text)\n",
" normalized_text = normalized_text.replace(\"\\u3099\", \"\").replace(\"\\u309A\", \"\")\n",
" return normalized_text"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "pV4kOgpvjWGg"
},
"source": [
"if PERFORM_DAKUTEN_NORMALIZATION:\n",
" normalized_train_token_set = set()\n",
" for token in train_token_set:\n",
" normalized_token = process_dakuten(str(token))\n",
" normalized_train_token_set.update(normalized_token)\n",
" \n",
" print(f\"After dakuten normalization, number of train tokens : {len(normalized_train_token_set)}\")\n",
"else:\n",
" normalized_train_token_set = train_token_set\n",
" "
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "_Ou2-w0Q5mcJ"
},
"source": [
"## Process special character tokens\n",
"\n",
"There are several tokens which do not accurately correspond to an acoustic feature. A few examples are various commas and the period. Think of it this way, unless every sentence ends with a period (and this is uncommon - since training datasets are often comprised of small snippets of audio out of a longer conversations), then a model has insufficient context to determine when to end a sentence from just the snippet it was provided.\n",
"\n",
"As such, we remove several special tokens such as commas, question marks, periods, quotation marks, and a few special tokens sometimes used in Japanese text."
]
},
{
"cell_type": "code",
"metadata": {
"id": "NN3asqvsrp_S"
},
"source": [
"# Preprocessing steps\n",
"import re\n",
"import unicodedata\n",
"\n",
"chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\“\\%\\‘\\”\\�\\…\\{\\}\\【\\】\\・\\。\\『\\』\\、\\ー\\〜]' # remove special character tokens\n",
"kanji_removal_regex = '[' + \"\".join([f\"\\{token}\" for token in extra_kanji]) + ']' # remove test set kanji\n",
"\n",
"\n",
"def remove_special_characters(data):\n",
" data[\"text\"] = re.sub(chars_to_ignore_regex, '', data[\"text\"]).lower().strip()\n",
" return data\n",
"\n",
"def remove_extra_kanji(data):\n",
" data[\"text\"] = re.sub(kanji_removal_regex, '', data[\"text\"])\n",
" return data\n",
"\n",
"def remove_dakuten(data):\n",
" # perform dakuten normalization (if it was requested)\n",
" if PERFORM_DAKUTEN_NORMALIZATION:\n",
" text = data['text']\n",
" data['text'] = process_dakuten(text)\n",
" return data"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "fZkvFKBur78c"
},
"source": [
"## Process dataset\n",
"\n",
"Now that we have the functions necessary to clean up the transcripts, let's create a small pipeline to clean up the manifest and write new manifests for us. For simplicity's sake (as the dataset is so small), a simple sequential pipeline will be sufficient for our use case."
]
},
{
"cell_type": "code",
"metadata": {
"id": "mwNtHeHLjqJl"
},
"source": [
"# Processing pipeline\n",
"def apply_preprocessors(manifest, preprocessors):\n",
" for processor in preprocessors:\n",
" for idx in tqdm(range(len(manifest)), desc=f\"Applying {processor.__name__}\"):\n",
" manifest[idx] = processor(manifest[idx])\n",
"\n",
" print(\"Finished processing manifest !\")\n",
" return manifest"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "xB06YHmDr-Ja"
},
"source": [
"# List of pre-processing functions\n",
"PREPROCESSORS = [\n",
" remove_special_characters,\n",
" remove_extra_kanji,\n",
" remove_dakuten,\n",
"]"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "4lqUvpkrr7bQ"
},
"source": [
"# Load manifests\n",
"train_data = read_manifest(train_manifest)\n",
"dev_data = read_manifest(dev_manifest)\n",
"test_data = read_manifest(test_manifest)\n",
"\n",
"# Apply preprocessing\n",
"train_data_processed = apply_preprocessors(train_data, PREPROCESSORS)\n",
"dev_data_processed = apply_preprocessors(dev_data, PREPROCESSORS)\n",
"test_data_processed = apply_preprocessors(test_data, PREPROCESSORS)\n",
"\n",
"# Write new manifests\n",
"train_manifest_cleaned = write_processed_manifest(train_data_processed, train_manifest)\n",
"dev_manifest_cleaned = write_processed_manifest(dev_data_processed, dev_manifest)\n",
"test_manifest_cleaned = write_processed_manifest(test_data_processed, test_manifest)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "pWDvMDU2O9pV"
},
"source": [
"## Final character set\n",
"\n",
"After pre-processing the dataset, let's recover the final character set used to train the models."
]
},
{
"cell_type": "code",
"metadata": {
"id": "WpHk6HW6O0FW"
},
"source": [
"train_manifest_data = read_manifest(train_manifest_cleaned)\n",
"train_charset = get_charset(train_manifest_data)\n",
"\n",
"dev_manifest_data = read_manifest(dev_manifest_cleaned)\n",
"dev_charset = get_charset(dev_manifest_data)\n",
"\n",
"train_dev_set = set.union(set(train_charset.keys()), set(dev_charset.keys()))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "R3xkR4_dPd3C"
},
"source": [
"print(f\"Number of tokens in preprocessed train+dev set : {len(train_dev_set)}\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "FnmVqx8aegwR"
},
"source": [
"# Character Encoding CTC Model\n",
"\n",
"Now that we have a processed dataset, we can begin training an ASR model on this dataset. The following section will detail how we prepare a CTC model which utilizes a Character Encoding scheme.\n",
"\n",
"This section will utilize a pre-trained [QuartzNet 15x5](https://arxiv.org/abs/1910.10261), which has been trained on roughly 7,000 hours of English speech base model. We will modify the decoder layer (thereby changing the model's vocabulary) and then train for a small number of epochs."
]
},
{
"cell_type": "code",
"metadata": {
"id": "DlJmwh-iei77"
},
"source": [
"char_model = nemo_asr.models.ASRModel.from_pretrained(\"stt_en_quartznet15x5\", map_location='cpu')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "gSI6t9dgSOxj"
},
"source": [
"## Update the vocabulary\n",
"\n",
"Changing the vocabulary of a character encoding ASR model is as simple as passing the list of new tokens that comprise the vocabulary as input to `change_vocabulary()`."
]
},
{
"cell_type": "code",
"metadata": {
"id": "1VU-jfYLei9-"
},
"source": [
"char_model.change_vocabulary(new_vocabulary=list(train_dev_set))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "58mQ7nNYSgWp"
},
"source": [
"## Training on low resource languages\n",
"\n",
"If the amount of training data or available computational resources are limited, it might be useful to freeze the encoder module of the network and train just the final decoder layer. This is also useful in cases where GPU memory is insufficient to train a large network, or cases where the model might overfit due to its size.\n",
"\n",
"-------\n",
"\n",
"In cases where sufficient data is available - and \"sufficient\" is dependent on the complexity of the language - then it is advised to train the encoder as well to get the best possible transcript. When we say sufficient is relative to the language, we have noticed that some languages can obtain reasonable scores with a few hundred hours of transcribed speech, whereas some languages require several thousand hours.\n",
"\n",
"------\n",
"\n",
"It is also important to note that if the language remains the same, and some specific domain of text must be adapted for ASR, it is often easier to add a domain-specific language model to guide the generic ASR model than to attempt fine-tuning a full ASR model on limited data from that specific domain. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "6PPDTaLyejAR"
},
"source": [
"#@title Freeze Encoder { display-mode: \"form\" }\n",
"freeze_encoder = True #@param [\"False\", \"True\"] {type:\"raw\"}\n",
"freeze_encoder = bool(freeze_encoder)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "olUbaW8LUPVZ"
},
"source": [
"### Frozen Encoder - Unfrozen Batch Normalization\n",
"\n",
"Freezing the encoder is generally helpful to limit computation and enable faster training; however, in many experiments, freezing the encoder in its entirety will often prevent a model from learning on low-resource languages. \n",
"\n",
"In order to enable a frozen encoder model to learn on a new language stably, we, therefore, unfreeze the batch normalization layers in the encoder. On top of this, if the model contains \"SqueezeExcite\" sub-modules, we unfreeze them as well.\n",
"\n",
"In doing so, we notice that such models train properly and obtain respectable scores even on severely resource-limited languages.\n",
"\n",
"------\n",
"\n",
"**Note**: This phenomenon disappears when sufficient data is available (in such a case, the entire encoder can be trained as well). Therefore it is advised to unfreeze the encoder when sufficient data is available."
]
},
{
"cell_type": "code",
"metadata": {
"id": "1qiTTgDGejC9"
},
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"def enable_bn_se(m):\n",
" if type(m) == nn.BatchNorm1d:\n",
" m.train()\n",
" for param in m.parameters():\n",
" param.requires_grad_(True)\n",
"\n",
" if 'SqueezeExcite' in type(m).__name__:\n",
" m.train()\n",
" for param in m.parameters():\n",
" param.requires_grad_(True)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "9I5dx_GWejFm"
},
"source": [
"if freeze_encoder:\n",
" char_model.encoder.freeze()\n",
" char_model.encoder.apply(enable_bn_se)\n",
" logging.info(\"Model encoder has been frozen, and batch normalization has been unfrozen\")\n",
"else:\n",
" char_model.encoder.unfreeze()\n",
" logging.info(\"Model encoder has been un-frozen\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "9_cAiuXSfRdW"
},
"source": [
"## Update config\n",
"\n",
"Each NeMo model has a config embedded in it, which can be accessed via `model.cfg`. In general, this is the config that was used to construct the model.\n",
"\n",
"For pre-trained models, this config generally represents the config used to construct the model when it was trained. A nice benefit to this embedded config is that we can repurpose it to set up new data loaders, optimizers, schedulers, and even data augmentation!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eklNZ4ynWhbB"
},
"source": [
"### Updating the character set of the model\n",
"\n",
"The most important step for preparing character encoding models for fine-tuning is to update the model's character set. Remember - the model was trained on some language with some specific dataset that had a certain character set. Character sets would rarely remain the same between training and fine-tuning (though it is still possible).\n",
"\n",
"Each character encoding model has a `model.cfg.labels` attribute, which can be overridden via OmegaConf."
]
},
{
"cell_type": "code",
"metadata": {
"id": "TBIy8p0fV7sa"
},
"source": [
"char_model.cfg.labels = list(train_dev_set)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "sEEzZD4gXGmm"
},
"source": [
"Now, we create a working copy of the model config and update it as needed."
]
},
{
"cell_type": "code",
"metadata": {
"id": "pzpByrdfejIA"
},
"source": [
"cfg = copy.deepcopy(char_model.cfg)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "kBFvo0UUfcuY"
},
"source": [
"### Setting up data loaders\n",
"\n",
"Now that the model's character set has been updated let's prepare the model to utilize the new character set even in the data loaders. Note that this is crucial so that the data produced during training/validation matches the new character set, and tokens are encoded/decoded correctly.\n",
"\n",
"**Note**: An important config parameter is `normalize_transcripts` and `parser`. There are some parsers that are used for specific languages for character based models - currently only `en` is supported. These parsers will preprocess the text with the given languages parser. However, for other languages, it is advised to explicitly set `normalize_transcripts = False` - which will prevent the parser from processing text. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "KlQ5iGrZejKy"
},
"source": [
"# Setup train, validation, test configs\n",
"with open_dict(cfg): \n",
" # Train dataset (Concatenate train manifest cleaned and dev manifest cleaned)\n",
" cfg.train_ds.manifest_filepath = f\"{train_manifest_cleaned},{dev_manifest_cleaned}\"\n",
" cfg.train_ds.labels = list(train_dev_set)\n",
" cfg.train_ds.normalize_transcripts = False\n",
" cfg.train_ds.batch_size = 32\n",
" cfg.train_ds.num_workers = 8\n",
" cfg.train_ds.pin_memory = True\n",
" cfg.train_ds.trim_silence = True\n",
"\n",
" # Validation dataset (Use test dataset as validation, since we train using train + dev)\n",
" cfg.validation_ds.manifest_filepath = test_manifest_cleaned\n",
" cfg.validation_ds.labels = list(train_dev_set)\n",
" cfg.validation_ds.normalize_transcripts = False\n",
" cfg.validation_ds.batch_size = 8\n",
" cfg.validation_ds.num_workers = 8\n",
" cfg.validation_ds.pin_memory = True\n",
" cfg.validation_ds.trim_silence = True"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "tx9DixV0ejMo"
},
"source": [
"# setup data loaders with new configs\n",
"char_model.setup_training_data(cfg.train_ds)\n",
"char_model.setup_multiple_validation_data(cfg.validation_ds)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "JJc7DyEUfem2"
},
"source": [
"### Setting up optimizer and scheduler\n",
"\n",
"When fine-tuning character models, it is generally advised to use a lower learning rate and reduced warmup. A reduced learning rate helps preserve the pre-trained weights of the encoder. Since the fine-tuning dataset is generally smaller than the original training dataset, the warmup steps would be far too much for the smaller fine-tuning dataset.\n",
"\n",
"-----\n",
"**Note**: When freezing the encoder, it is possible to use the original learning rate as the model was trained on. The original learning rate can be used because the encoder is frozen, so the learning rate is used only to optimize the decoder. However, a very high learning rate would still destabilize training, even with a frozen encoder."
]
},
{
"cell_type": "code",
"metadata": {
"id": "MgoD5hOKYSKJ"
},
"source": [
"# Original optimizer + scheduler\n",
"print(OmegaConf.to_yaml(char_model.cfg.optim))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "okytaslHejOm"
},
"source": [
"with open_dict(char_model.cfg.optim):\n",
" char_model.cfg.optim.lr = 0.01\n",
" char_model.cfg.optim.betas = [0.95, 0.5] # from paper\n",
" char_model.cfg.optim.weight_decay = 0.001 # Original weight decay\n",
" char_model.cfg.optim.sched.warmup_steps = None # Remove default number of steps of warmup\n",
" char_model.cfg.optim.sched.warmup_ratio = 0.05 # 5 % warmup\n",
" char_model.cfg.optim.sched.min_lr = 1e-5"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Waz64_NXfkIQ"
},
"source": [
"### Setting up augmentation\n",
"\n",
"Remember that the model was trained on several thousands of hours of data, so the regularization provided to it might not suit the current dataset. We can easily change it as we see fit.\n",
"\n",
"-----\n",
"\n",
"You might notice that we utilize `char_model.from_config_dict()` to create a new SpectrogramAugmentation object and assign it directly in place of the previous augmentation. This is generally the syntax to be followed whenever you notice a `_target_` tag in the config of a model's inner config. \n",
"\n",
"-----\n",
"**Note**: For low resource languages, it might be better to increase augmentation via SpecAugment to reduce overfitting. However, this might, in turn, make it too hard for the model to train in a short number of epochs."
]
},
{
"cell_type": "code",
"metadata": {
"id": "aJ6Md-dLejRA"
},
"source": [
"print(OmegaConf.to_yaml(char_model.cfg.spec_augment))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "3ei9WsLzejTI"
},
"source": [
"# with open_dict(char_model.cfg.spec_augment):\n",
"# char_model.cfg.spec_augment.freq_masks = 2\n",
"# char_model.cfg.spec_augment.freq_width = 25\n",
"# char_model.cfg.spec_augment.time_masks = 2\n",
"# char_model.cfg.spec_augment.time_width = 0.05\n",
"\n",
"char_model.spec_augmentation = char_model.from_config_dict(char_model.cfg.spec_augment)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "iK-RQXEZfq1V"
},
"source": [
"## Setup Metrics\n",
"\n",
"Originally, the model was trained on an English dataset corpus. When calculating Word Error Rate, we can easily use the \"space\" token as a separator for word boundaries. On the other hand, certain languages such as Japanese and Mandarin do not use \"space\" tokens, instead opting for different ways to annotate the end of the word.\n",
"\n",
"In cases where the \"space\" token is not used to denote a word boundary, we can use the Character Error Rate metric instead, which computes the edit distance at a token level rather than a word level.\n",
"\n",
"We might also be interested in noting model predictions during training and inference. As such, we can enable logging of the predictions."
]
},
{
"cell_type": "code",
"metadata": {
"id": "cN1FC0o2ejVg",
"cellView": "form"
},
"source": [
"#@title Metric\n",
"use_cer = True #@param [\"False\", \"True\"] {type:\"raw\"}\n",
"log_prediction = True #@param [\"False\", \"True\"] {type:\"raw\"}\n",
"\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "HURZMpPwejXa"
},
"source": [
"char_model._wer.use_cer = use_cer\n",
"char_model._wer.log_prediction = log_prediction"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "rizGRfrHf92O"
},
"source": [
"## Setup Trainer and Experiment Manager\n",
"\n",
"And that's it! Now we can train the model by simply using the Pytorch Lightning Trainer and NeMo Experiment Manager as always.\n",
"\n",
"For demonstration purposes, the number of epochs is kept intentionally low. Reasonable results can be obtained in around 100 epochs (approximately 25 minutes on Colab GPUs)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "eaw1qsQIf1Zv"
},
"source": [
"import torch\n",
"import pytorch_lightning as ptl\n",
"\n",
"if torch.cuda.is_available():\n",
" accelerator = 'gpu'\n",
"else:\n",
" accelerator = 'cpu'\n",
"\n",
"EPOCHS = 50 # 100 epochs would provide better results, but would take an hour to train\n",
"\n",
"trainer = ptl.Trainer(devices=1, \n",
" accelerator=accelerator, \n",
" max_epochs=EPOCHS, \n",
" accumulate_grad_batches=1,\n",
" enable_checkpointing=False,\n",
" logger=False,\n",
" log_every_n_steps=5,\n",
" check_val_every_n_epoch=10)\n",
"\n",
"# Setup model with the trainer\n",
"char_model.set_trainer(trainer)\n",
"\n",
"# Finally, update the model's internal config\n",
"char_model.cfg = char_model._cfg"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ENSpJJqcf1cG"
},
"source": [
"# Environment variable generally used for multi-node multi-gpu training.\n",
"# In notebook environments, this flag is unnecessary and can cause logs of multiple training runs to overwrite each other.\n",
"os.environ.pop('NEMO_EXPM_VERSION', None)\n",
"\n",
"config = exp_manager.ExpManagerConfig(\n",
" exp_dir=f'experiments/lang-{LANGUAGE}/',\n",
" name=f\"ASR-Char-Model-Language-{LANGUAGE}\",\n",
" checkpoint_callback_params=exp_manager.CallbackParams(\n",
" monitor=\"val_wer\",\n",
" mode=\"min\",\n",
" always_save_nemo=True,\n",
" save_best_model=True,\n",
" ),\n",
")\n",
"\n",
"config = OmegaConf.structured(config)\n",
"\n",
"logdir = exp_manager.exp_manager(trainer, config)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ATI2R0D7rylR"
},
"source": [
"try:\n",
" from google import colab\n",
" COLAB_ENV = True\n",
"except (ImportError, ModuleNotFoundError):\n",
" COLAB_ENV = False\n",
"\n",
"# Load the TensorBoard notebook extension\n",
"if COLAB_ENV:\n",
" %load_ext tensorboard\n",
" %tensorboard --logdir /content/experiments/lang-$LANGUAGE/ASR-Char-Model-Language-$LANGUAGE/\n",
"else:\n",
" print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "TvaESyJHf1eb"
},
"source": [
"%%time\n",
"trainer.fit(char_model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "hJZJCf5nbM20"
},
"source": [
"## Results\n",
"\n",
"Whether you trained for small number of epochs, the character word error rate seems high (even after 100 epochs, CER is close to 45-50% or so on the test set).\n",
"\n",
"Considering the limited amount of data available and the extensive vocabulary, this is expected to some degree. Remember that nearly 177 tokens were out of vocabulary in the test set - so those acoustic features can't be adequately captured using just the train set tokens. \n",
"\n",
"For reference, AISHELL datasets comprise some few hundred to one thousand hours of Mandarin speech to train roughly 5600 tokens, and those models are generally trained for a very long time on multi GPU setups."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TRat7IXBgcIB"
},
"source": [
"# Sub-word Encoding CTC Model\n",
"\n",
"Sub-word encoding models are almost nearly identical to the Character encoding models. The primary difference lies in the fact that a sub-encoding model accepts a sub-word tokenized text corpus and emits sub-word tokens in its decoding step. The following section will detail how we prepare a CTC model which utilizes a sub-word Encoding scheme.\n",
"\n",
"For this section, we will utilize a pre-trained [Citrinet 512](https://arxiv.org/abs/2104.01721) trained on roughly 7,000 hours of English speech as the base model. We will modify the decoder layer (thereby changing the model's vocabulary) and then train for a small number of epochs."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-wHSLbkqOm5k"
},
"source": [
"## Prepare Tokenizer\n",
"\n",
"Before we update the vocabulary of the model, first, we need to construct a tokenizer. NeMo supports both Word Piece Tokenizer (via HuggingFace) or Sentence Piece Tokenizer (via Google SentencePiece library). We will utilize the SentencePiece tokenizer in this tutorial.\n",
"\n",
"-----\n",
"Preparation of the tokenizer is made simple by the `process_asr_text_tokenizer.py` script in NeMo. We will leverage this script to build the text corpus from the manifest directly, then create a tokenizer using that corpus.\n",
"\n",
"**Note**: Ordinarily, for languages that have such substantially large vocabularies, there is no significant benefit obtained by constructing sub-word vocabulary. In Natural Language Processing, we could use enormous vocabulary sizes of 10,000+ tokens, but that is unfeasible for CTC loss training of ASR models.\n",
"\n",
"Therefore, we will construct a sub-word tokenizer with vocabulary size exactly the same as the character encoding model plus add a few tokens required by SentencePiece required to perform tokenization. You can experiment with the effect of larger vocabularies by editing `VOCAB_SIZE` below."
]
},
{
"cell_type": "code",
"metadata": {
"id": "yIUQklly9BPa"
},
"source": [
"if not os.path.exists(\"scripts/process_asr_text_tokenizer.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/tokenizers/process_asr_text_tokenizer.py"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "SKA9rrpbm3nu"
},
"source": [
"#@title Tokenizer Config { display-mode: \"form\" }\n",
"TOKENIZER_TYPE = \"bpe\" #@param [\"bpe\", \"unigram\"]"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "WysX1r4R7giK"
},
"source": [
"You might wonder, why do we need `len(train_dev_set) + 2` as the minimum`VOCAB_SIZE`. The answer is that we are utilizing the SentencePiece implementation of the Byte Pair Tokenization algorithm. \n",
"\n",
"In this case, the byte piece tokenizer requires *at least two tokens* - `<unk>` and `_`. SentencePiece represents `<unk>` using the `⁇` token."
]
},
{
"cell_type": "code",
"metadata": {
"id": "lO_uskUEm2ZG"
},
"source": [
"# << VOCAB SIZE can be changed to any value larger than (len(train_dev_set) + 2)! >>\n",
"VOCAB_SIZE = len(train_dev_set) + 2"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "oQ-F99pqhAWa"
},
"source": [
"Most of the arguments are similar to those explained in the `ASR with Subword Tokenization notebook`. \n",
"\n",
"------\n",
"\n",
"You will note that there is an argument `spe_character_coverage=1.0`. This value means that 100% of the base character set (1200~ tokens) must be present in the tokenizer vocab. However, for languages like Japanese and Mandarin, we notice that many tokens occur very infrequently (nearly 1000 tokens appear fewer than five times in the entire training set !), so we can suggest to SentencePiece tokenizer that we are alright with dropping up to 2% of the original character set and replace then with `⁇` (which represent the `UNK` token for SPE)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "yT-SBPN2Ox6Y"
},
"source": [
"!python scripts/process_asr_text_tokenizer.py \\\n",
" --manifest=$train_manifest_cleaned,$dev_manifest_cleaned \\\n",
" --vocab_size=$VOCAB_SIZE \\\n",
" --data_root=$tokenizer_dir \\\n",
" --tokenizer=\"spe\" \\\n",
" --spe_type=$TOKENIZER_TYPE \\\n",
" --spe_character_coverage=1.0 \\\n",
" --no_lower_case \\\n",
" --log"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "G5TxLHtKPW4E"
},
"source": [
"TOKENIZER_DIR = f\"{tokenizer_dir}/tokenizer_spe_{TOKENIZER_TYPE}_v{VOCAB_SIZE}/\"\n",
"print(\"Tokenizer directory :\", TOKENIZER_DIR)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "McIt7jAniER2"
},
"source": [
"When using the `unigram` tokenizer, for certain languages, it is possible to request a tokenizer vocab size larger than the number of unique unigram subwords that can be built from the text corpus. This happens more frequently in low-resource languages where a very small number of transcripts exist.\n",
"\n",
"So we perform a check, asserting that the number of tokens in the vocabulary is >= the VOCAB_SIZE."
]
},
{
"cell_type": "code",
"metadata": {
"id": "8sAz2_RyMu7J"
},
"source": [
"# Number of tokens in tokenizer - \n",
"with open(os.path.join(TOKENIZER_DIR, 'tokenizer.vocab')) as f:\n",
" tokens = f.readlines()\n",
"\n",
"num_tokens = len(tokens)\n",
"print(\"Number of tokens : \", num_tokens)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "zktPYPCxNXNO"
},
"source": [
"if num_tokens < VOCAB_SIZE:\n",
" print(\n",
" f\"The text in this dataset is too small to construct a tokenizer \"\n",
" f\"with vocab size = {VOCAB_SIZE}. Current number of tokens = {num_tokens}. \"\n",
" f\"Please reconstruct the tokenizer with fewer tokens\"\n",
" )"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "jb89gpuLQT8b"
},
"source": [
"## Load pre-trained model\n",
"\n",
"Here we will load a pre-trained Citrinet 512. The model possesses nearly twice the parameter count of QuartzNet, and has a larger receptive field due to its three stride layers (effectively striding the temporal dimension by 8x)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "mmSj18iQQTZx"
},
"source": [
"model = nemo_asr.models.ASRModel.from_pretrained(\"stt_en_citrinet_512\", map_location='cpu')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "9lxiFMZAoakX"
},
"source": [
"## Preserving decoder initialization for sub-word models\n",
"\n",
"Subword tokenization has an interesting phenomenon. In many languages, the base character set is small enough that many sub-words can be computed to produce a finite-sized tokenizer vocabulary (the model above has a vocabulary size of 1024 Byte Pair subwords). When preparing the tokenizer on a fine-tuning corpus, it might be possible to once again prepare a tokenizer with exactly the same number of tokens (say 1024). \n",
"\n",
"In such a case, the weight matrices of the decoder match exactly, and therefore the pre-trained weights of the original model can be loaded onto the new model! This is treated as a good initialization only since further gradient updates will update significantly change the alignments of the decoder. However, we find that such an initialization sometimes significantly improves word error rate and slightly improved convergence speed.\n",
"\n",
"-----\n",
"**Note**: While this approach applies to many languages, it cannot be used for languages where the base character set is larger than the previous tokenizer vocab size (say for Japanese or Mandarin where the number of base characters is larger than the original tokenizer vocabulary size itself)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "FmFQKwGkoaIx"
},
"source": [
"# Preserve the decoder parameters in case weight matching can be done later\n",
"pretrained_decoder = model.decoder.state_dict()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "7oYJ-ByhkeWv"
},
"source": [
"## Update the vocabulary\n",
"\n",
"Changing the vocabulary of a sub-word encoding ASR model is as simple as passing the path of the tokenizer dir to `change_vocabulary()`."
]
},
{
"cell_type": "code",
"metadata": {
"id": "-8SKfYSVorgg"
},
"source": [
"model.change_vocabulary(new_tokenizer_dir=TOKENIZER_DIR, new_tokenizer_type=\"bpe\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Um1kEbRMkype"
},
"source": [
"## Restore decoder weights (if possible)\n",
"\n",
"As mentioned above, if the new vocabulary size matches the old vocabulary size, it is possible to restore the decoder weights in addition to the encoder weights.\n",
"\n",
"The following snippet checks the weight shapes and then attempts to restore the parameters of the decoder."
]
},
{
"cell_type": "code",
"metadata": {
"id": "367FBtRDorkT"
},
"source": [
"# Insert preserved model weights if shapes match\n",
"if model.decoder.decoder_layers[0].weight.shape == pretrained_decoder['decoder_layers.0.weight'].shape:\n",
" model.decoder.load_state_dict(pretrained_decoder)\n",
" logging.info(\"Decoder shapes matched - restored weights from pre-trained model\")\n",
"else:\n",
" logging.info(\"\\nDecoder shapes did not match - could not restore decoder weights from pre-trained model.\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "bZXd97Lp3_uT"
},
"source": [
"## Frozen Encoder - Unfrozen Batch Normalization\n",
"\n",
"Similar to the Character-based models, we can freeze the encoder and unfreeze the batch normalization layers if the dataset is tiny."
]
},
{
"cell_type": "code",
"metadata": {
"id": "lfDW0gQVpm4d"
},
"source": [
"#@title Freeze Encoder { display-mode: \"form\" }\n",
"freeze_encoder = True #@param [\"False\", \"True\"] {type:\"raw\"}\n",
"freeze_encoder = bool(freeze_encoder)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "oLkm96zkplrX"
},
"source": [
"if freeze_encoder:\n",
" model.encoder.freeze()\n",
" model.encoder.apply(enable_bn_se)\n",
" logging.info(\"Model encoder has been frozen\")\n",
"else:\n",
" model.encoder.unfreeze()\n",
" logging.info(\"Model encoder has been un-frozen\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "1hh9Zh5TRNFd"
},
"source": [
"## Update config\n",
"\n",
"Similar to the character encoding CTC model above, we will update the config for the sub-word encoding model. \n",
"\n",
"It is primarily the data loaders that will be affected by the switch from character encoding to sub-word encoding."
]
},
{
"cell_type": "code",
"metadata": {
"id": "pBYAd_2-R2r3"
},
"source": [
"cfg = copy.deepcopy(model.cfg)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "i4aefCOlgvSB"
},
"source": [
"### Setup tokenizer\n",
"\n",
"This step is merely for demonstration - when we updated the tokenizer previously using `change_vocabulary()`, it internally performed this step as well."
]
},
{
"cell_type": "code",
"metadata": {
"id": "NfbtgTC-RyzF"
},
"source": [
"# Setup new tokenizer\n",
"cfg.tokenizer.dir = TOKENIZER_DIR\n",
"cfg.tokenizer.type = \"bpe\"\n",
"\n",
"# Set tokenizer config\n",
"model.cfg.tokenizer = cfg.tokenizer"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "f296YomrgzXG"
},
"source": [
"### Setup data loaders\n",
"\n",
"While significant sections remain the same between character-based and sub-word-based model configs - the data loaders are the main area where they diverge.\n",
"\n",
"The sub-word encoding models do not require a \"model.cfg.labels\" section. In fact, their data loaders do not require `labels` at all! The labels are automatically extracted from the provided tokenizer, and the data loaders and updated implicitly."
]
},
{
"cell_type": "code",
"metadata": {
"id": "wnw-ygClmg7t"
},
"source": [
"# Setup train/val/test configs\n",
"print(OmegaConf.to_yaml(cfg.train_ds))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "OlOowK7rRAvs"
},
"source": [
"# Setup train, validation, test configs\n",
"with open_dict(cfg):\n",
" # Train dataset\n",
" cfg.train_ds.manifest_filepath = f\"{train_manifest_cleaned},{dev_manifest_cleaned}\"\n",
" cfg.train_ds.batch_size = 32\n",
" cfg.train_ds.num_workers = 8\n",
" cfg.train_ds.pin_memory = True\n",
" cfg.train_ds.use_start_end_token = True\n",
" cfg.train_ds.trim_silence = True\n",
"\n",
" # Validation dataset\n",
" cfg.validation_ds.manifest_filepath = test_manifest_cleaned\n",
" cfg.validation_ds.batch_size = 8\n",
" cfg.validation_ds.num_workers = 8\n",
" cfg.validation_ds.pin_memory = True\n",
" cfg.validation_ds.use_start_end_token = True\n",
" cfg.validation_ds.trim_silence = True\n",
"\n",
" # Test dataset\n",
" cfg.test_ds.manifest_filepath = test_manifest_cleaned\n",
" cfg.test_ds.batch_size = 8\n",
" cfg.test_ds.num_workers = 8\n",
" cfg.test_ds.pin_memory = True\n",
" cfg.test_ds.use_start_end_token = True\n",
" cfg.test_ds.trim_silence = True"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "y98ZAhBtRtoD"
},
"source": [
"# setup model with new configs\n",
"model.setup_training_data(cfg.train_ds)\n",
"model.setup_multiple_validation_data(cfg.validation_ds)\n",
"model.setup_multiple_test_data(cfg.test_ds)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "t2iOQlFfs2Ig"
},
"source": [
"### Examine dataset outliers\n",
"\n",
"In general, there are minor differences between the Character encoding and Sub-word encoding models. Since sub-words can encode larger sequence of tokens into a single subword, they substantially reduce the target sequence length.\n",
"\n",
"Citrinet takes advantage of this reduction by aggressively downsampling the input three times (a total of 8x downsampling). At this level of downsampling, it is possible to encounter a specific limitation of CTC loss.\n",
"\n",
"-----\n",
"\n",
"CTC loss works under the assumption that $T$ (the acoustic model's output sequence length) $> U$ (the target sequence length). If this criterion is violated, CTC loss is practically set to $\\infty$ (which is then forced to $0$ by PyTorch's `zero_infinity` flag), and its gradient is set to 0.\n",
"\n",
"Therefore it is essential to inspect the ratio of $\\frac{T}{U}$ and ensure that it's reasonably close to 1 or higher.\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ozJDj6BktKw-"
},
"source": [
"def analyse_ctc_failures_in_model(model):\n",
" count_ctc_failures = 0\n",
" am_seq_lengths = []\n",
" target_seq_lengths = []\n",
"\n",
" device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
" model = model.to(device)\n",
" mode = model.training\n",
" \n",
" train_dl = model.train_dataloader()\n",
"\n",
" with torch.no_grad():\n",
" model = model.eval()\n",
" for batch in tqdm(train_dl, desc='Checking for CTC failures'):\n",
" x, x_len, y, y_len = batch\n",
" x, x_len = x.to(device), x_len.to(device)\n",
" x_logprobs, x_len, greedy_predictions = model(input_signal=x, input_signal_length=x_len)\n",
"\n",
" # Find how many CTC loss computation failures will occur\n",
" for xl, yl in zip(x_len, y_len):\n",
" if xl <= yl:\n",
" count_ctc_failures += 1\n",
"\n",
" # Record acoustic model lengths=\n",
" am_seq_lengths.extend(x_len.to('cpu').numpy().tolist())\n",
"\n",
" # Record target sequence lengths\n",
" target_seq_lengths.extend(y_len.to('cpu').numpy().tolist())\n",
" \n",
" del x, x_len, y, y_len, x_logprobs, greedy_predictions\n",
" \n",
" if mode:\n",
" model = model.train()\n",
" \n",
" return count_ctc_failures, am_seq_lengths, target_seq_lengths"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "hJGUcq2BtKzw"
},
"source": [
"results = analyse_ctc_failures_in_model(model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "crEWxvI2tK2S"
},
"source": [
"num_ctc_failures, am_seq_lengths, target_seq_lengths = results"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "L8M0-mSI1Jp5"
},
"source": [
"if num_ctc_failures > 0:\n",
" logging.warning(f\"\\nCTC loss will fail for {num_ctc_failures} samples ({num_ctc_failures * 100./ float(len(am_seq_lengths))} % of samples)!\\n\"\n",
" f\"Increase the vocabulary size of the tokenizer so that this number becomes close to zero !\")\n",
"else:\n",
" logging.info(\"No CTC failure cases !\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "00wKre0W1Jsx"
},
"source": [
"# Compute average ratio of T / U\n",
"avg_T = sum(am_seq_lengths) / float(len(am_seq_lengths))\n",
"avg_U = sum(target_seq_lengths) / float(len(target_seq_lengths))\n",
"\n",
"avg_length_ratio = 0\n",
"for am_len, tgt_len in zip(am_seq_lengths, target_seq_lengths):\n",
" avg_length_ratio += (am_len / float(tgt_len))\n",
"avg_length_ratio = avg_length_ratio / len(am_seq_lengths)\n",
"\n",
"print(f\"Average Acoustic model sequence length = {avg_T}\")\n",
"print(f\"Average Target sequence length = {avg_U}\")\n",
"print()\n",
"print(f\"Ratio of Average AM sequence length to target sequence length = {avg_length_ratio}\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ykAz-hBWSvp0"
},
"source": [
"### Setup optimizer and scheduler\n",
"\n",
"Similar to the character encoding model, we slightly reduce the learning rate when fine-tuning. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "sS-xoplxSTJv"
},
"source": [
"print(OmegaConf.to_yaml(cfg.optim))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "cyQV0E2yXkCA"
},
"source": [
"Reduce learning rate and warmup if required\n",
"\n",
"Optimizer and scheduler will be automatically instantiated from this config during training."
]
},
{
"cell_type": "code",
"metadata": {
"id": "Io55nnbdXoeG"
},
"source": [
"with open_dict(model.cfg.optim):\n",
" model.cfg.optim.lr = 0.025\n",
" model.cfg.optim.weight_decay = 0.001\n",
" model.cfg.optim.sched.warmup_steps = None # Remove default number of steps of warmup\n",
" model.cfg.optim.sched.warmup_ratio = 0.10 # 10 % warmup\n",
" model.cfg.optim.sched.min_lr = 1e-9"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "L4QuIxqRiApI"
},
"source": [
"### Setup data augmentation\n",
"\n",
"We also increase the SpecAugment masks to prevent overfitting (since it is a larger model)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "6Vb35_oRh_sV"
},
"source": [
"with open_dict(model.cfg.spec_augment):\n",
" model.cfg.spec_augment.freq_masks = 2\n",
" model.cfg.spec_augment.freq_width = 25\n",
" model.cfg.spec_augment.time_masks = 10\n",
" model.cfg.spec_augment.time_width = 0.05\n",
"\n",
"model.spec_augmentation = model.from_config_dict(model.cfg.spec_augment)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "h9mLtRcA6t6z"
},
"source": [
"## Setup Metrics\n",
"\n",
"We once again use Character Error Rate (CER) instead of Word Error Rate (WER) since Japanese tokens (even when sub-word encoded) still should be treated as individual tokens after the sub-words are decoded into characters."
]
},
{
"cell_type": "code",
"metadata": {
"cellView": "form",
"id": "UfUlPXZS6vlV"
},
"source": [
"#@title Metric\n",
"use_cer = True #@param [\"False\", \"True\"] {type:\"raw\"}\n",
"log_prediction = True #@param [\"False\", \"True\"] {type:\"raw\"}\n",
"\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "6qpbMNZh68p9"
},
"source": [
"model._wer.use_cer = use_cer\n",
"model._wer.log_prediction = log_prediction"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "T81gd8T0TESv"
},
"source": [
"## Setup Trainer and Experiment Manager\n",
"\n",
"And that's it! Now we can train the model by simply using the Pytorch Lightning Trainer and NeMo Experiment Manager as always.\n",
"\n",
"For demonstration purposes, the number of epochs can be reduced. Reasonable results can be obtained in around 100 epochs (approximately 25 minutes on Colab GPUs)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "bonpx5sRS07M"
},
"source": [
"import torch\n",
"import pytorch_lightning as ptl\n",
"\n",
"if torch.cuda.is_available():\n",
" accelerator = 'gpu'\n",
"else:\n",
" accelerator = 'gpu'\n",
"\n",
"EPOCHS = 50 # 100 epochs would provide better results\n",
"\n",
"trainer = ptl.Trainer(devices=1, \n",
" accelerator=accelerator, \n",
" max_epochs=EPOCHS, \n",
" accumulate_grad_batches=1,\n",
" enable_checkpointing=False,\n",
" logger=False,\n",
" log_every_n_steps=5,\n",
" check_val_every_n_epoch=10)\n",
"\n",
"# Setup model with the trainer\n",
"model.set_trainer(trainer)\n",
"\n",
"# finally, update the model's internal config\n",
"model.cfg = model._cfg"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "SR4CiViFS8Ww"
},
"source": [
"from nemo.utils import exp_manager\n",
"\n",
"# Environment variable generally used for multi-node multi-gpu training.\n",
"# In notebook environments, this flag is unnecessary and can cause logs of multiple training runs to overwrite each other.\n",
"os.environ.pop('NEMO_EXPM_VERSION', None)\n",
"\n",
"config = exp_manager.ExpManagerConfig(\n",
" exp_dir=f'experiments/lang-{LANGUAGE}/',\n",
" name=f\"ASR-Model-Language-{LANGUAGE}\",\n",
" checkpoint_callback_params=exp_manager.CallbackParams(\n",
" monitor=\"val_wer\",\n",
" mode=\"min\",\n",
" always_save_nemo=True,\n",
" save_best_model=True,\n",
" ),\n",
")\n",
"\n",
"config = OmegaConf.structured(config)\n",
"\n",
"logdir = exp_manager.exp_manager(trainer, config)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "OlvyYwYWTsl6"
},
"source": [
"try:\n",
" from google import colab\n",
" COLAB_ENV = True\n",
"except (ImportError, ModuleNotFoundError):\n",
" COLAB_ENV = False\n",
"\n",
"# Load the TensorBoard notebook extension\n",
"if COLAB_ENV:\n",
" %load_ext tensorboard\n",
" %tensorboard --logdir /content/experiments/lang-$LANGUAGE/ASR-Model-Language-$LANGUAGE/\n",
"else:\n",
" print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "6X21Q2qfVLvG"
},
"source": [
"%%time\n",
"trainer.fit(model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "VvJJ8_TGOYIm"
},
"source": [
"# Save the final model\n",
"\n",
"Finally, we can save a checkpoint (which can be downloaded from the file browser tab on a colab environment)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "DoWNVNYGOaMX"
},
"source": [
"save_path = f\"Model-{LANGUAGE}.nemo\"\n",
"model.save_to(f\"{save_path}\")\n",
"print(f\"Model saved at path : {os.getcwd() + os.path.sep + save_path}\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "CpwHsj16bkkK"
},
"source": [
"# Conclusion\n",
"\n",
"This tutorial discussed the generic steps to prepare a dataset in a different language, prepared two models for fine-tuning, and discussed some additional insights for fine-tuning CTC-based models.\n",
"\n",
"While the focus was on a small dataset for Japanese, nearly all of this information can be used for larger datasets and other scenarios where compute is limited, or the model's size prevents fine-tuning the entire model."
]
}
]
}
|