File size: 104,894 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "01_NeMo_Models.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "code",
"metadata": {
"id": "ASnx4b5jXsil"
},
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"\n",
"# ## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
"\n",
"## Install TorchAudio\n",
"!pip install torchaudio>=0.10.0 -f https://download.pytorch.org/whl/torch_stable.html\n",
"\n",
"## Grab the config we'll use in this example\n",
"!mkdir configs"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "a0eAURFKXdFT"
},
"source": [
"# minGPT License\n",
"\n",
"*This notebook port's the [minGPT codebase](https://github.com/karpathy/minGPT) into equivalent NeMo code. The license for minGPT has therefore been attached here.*\n",
"\n",
"```\n",
"The MIT License (MIT) Copyright (c) 2020 Andrej Karpathy\n",
"\n",
"Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:\n",
"\n",
"The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.\n",
"\n",
"THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2b7Z064UZFH9"
},
"source": [
"# torch-rnn License\n",
"*This notebook utilizes the `tiny-shakespeare` dataset from the [torch-rnn](https://github.com/jcjohnson/torch-rnn) codebase. The license for torch-rnn has therefore been attached here.*\n",
"\n",
"```\n",
"The MIT License (MIT)\n",
"\n",
"Copyright (c) 2016 Justin Johnson\n",
"\n",
"Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:\n",
"\n",
"The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.\n",
"\n",
"THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eKzK-Z7obCED"
},
"source": [
"-------\n",
"\n",
"***Note: This notebook will intentionally introduce some errors to show the power of Neural Types or model development concepts, inside the cells marked with `[ERROR CELL]`. The explanation of and resolution of such errors can be found in the subsequent cells.***\n",
"\n",
"-----"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "81qdv0mPee-j"
},
"source": [
"# The NeMo Model\n",
"\n",
"NeMo comes with several state-of-the-art pre-trained Conversational AI models for users to quickly be able to start training and fine-tuning on their own datasets. \n",
"\n",
"In the previous [NeMo Primer](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/00_NeMo_Primer.ipynb) notebook, we learned how to download pretrained checkpoints with NeMo and we also discussed the fundamental concepts of the NeMo Model. The previous tutorial showed us how to use, modify, save, and restore NeMo Models.\n",
"\n",
"In this tutorial we will learn how to develop a non-trivial NeMo model from scratch. This helps us to understand the underlying components and how they interact with the overall PyTorch ecosystem.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nKNftwxzllth"
},
"source": [
"-------\n",
"At the heart of NeMo lies the concept of the \"Model\". For NeMo developers, a \"Model\" is the neural network(s) as well as all the infrastructure supporting those network(s), wrapped into a singular, cohesive unit. As such, most NeMo models are constructed to contain the following out of the box (note: some NeMo models support additional functionality specific to the domain/use case!) - \n",
"\n",
" - Neural Network architecture - all of the modules that are required for the model.\n",
"\n",
" - Dataset + Data Loaders - all of the components that prepare the data for consumption during training or evaluation.\n",
"\n",
" - Preprocessing + Postprocessing - any of the components that process the datasets so the modules can easily consume them.\n",
"\n",
" - Optimizer + Schedulers - basic defaults that work out of the box and allow further experimentation with ease.\n",
"\n",
" - Any other supporting infrastructure - tokenizers, language model configuration, data augmentation, etc."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5VOoAQT1mipO"
},
"source": [
"# Constructing a NeMo Model\n",
"\n",
"NeMo \"Models\" are comprised of a few key components, so let's tackle them one by one. We will attempt to go in the order that's stated above.\n",
"\n",
"To make this slightly challenging, let's port a model from the NLP domain this time. Transformers are all the rage, with BERT and his friends from Sesame Street forming the core infrastructure for many NLP tasks. \n",
"\n",
"An excellent (yet simple) implementation of one such model - GPT - can be found in the `minGPT` repository - https://github.com/karpathy/minGPT. While the script is short, it explains and succinctly explores all of the core components we expect in a NeMo model, so it's a prime candidate for NeMo! Sidenote: NeMo supports GPT in its NLP collection, and as such, this notebook aims to be an in-depth development walkthrough for such models.\n",
"\n",
"In the following notebook, we will attempt to port minGPT to NeMo, and along the way, discuss some core concepts of NeMo itself."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fOlQKsaRot1l"
},
"source": [
"# Constructing the Neural Network Architecture\n",
"\n",
"First, on the list - the neural network that forms the backbone of the NeMo Model.\n",
"\n",
"So how do we create such a model? Using PyTorch! As you'll see below, NeMo components are compatible with all of PyTorch, so you can augment your workflow without ever losing the flexibility of PyTorch itself!\n",
"\n",
"Let's start with a couple of imports - "
]
},
{
"cell_type": "code",
"metadata": {
"id": "piLOgwOPX1FS"
},
"source": [
"import torch\n",
"import nemo\n",
"from nemo.core import NeuralModule\n",
"from nemo.core import typecheck"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "yySYjHgAqVvT"
},
"source": [
"## Neural Module\n",
"Wait, what's `NeuralModule`? Where is the wonderful `torch.nn.Module`? \n",
"\n",
"`NeuralModule` is a subclass of `torch.nn.Module`, and it brings with it a few additional functionalities.\n",
"\n",
"In addition to being a `torch.nn.Module`, thereby being entirely compatible with the PyTorch ecosystem, it has the following capabilities - \n",
"\n",
"1) `Typing` - It adds support for `Neural Type Checking` to the model. `Typing` is optional but quite useful, as we will discuss below!\n",
"\n",
"2) `Serialization` - Remember the `OmegaConf` config dict and YAML config files? Well, all `NeuralModules` inherently supports serialization/deserialization from such config dictionaries!\n",
"\n",
"3) `FileIO` - This is another entirely optional file serialization system. Does your `NeuralModule` require some way to preserve data that can't be saved into a PyTorch checkpoint? Write your serialization and deserialization logic in two handy methods! **Note**: When you create the final NeMo Model, this will be implemented for you! Automatic serialization and deserialization support of NeMo models!\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "bseLiNoqqQrE"
},
"source": [
"class MyEmptyModule(NeuralModule):\n",
"\n",
" def forward(self):\n",
" print(\"Neural Module ~ hello world!\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "j4Q36L5urdOQ"
},
"source": [
"x = MyEmptyModule()\n",
"x()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "lHXAcn5Ot_1I"
},
"source": [
"## Neural Types\n",
"\n",
"Neural Types? You might be wondering what that term refers to.\n",
"\n",
"Almost all NeMo components inherit the class `Typing`. `Typing` is a simple class that adds two properties to the class that inherits it - `input_types` and `output_types`. A NeuralType, by its shortest definition, is simply a semantic tensor. It contains information regarding the semantic shape the tensor should hold, as well as the semantic information of what that tensor represents. That's it.\n",
"\n",
"So what semantic information does such a typed tensor contain? Let's take an example below.\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ezOJERbVwG34"
},
"source": [
"------\n",
"Across the Deep Learning domain, we often encounter cases where tensor shapes may match, but the semantics don't match at all. For example take a look at the following rank 3 tensors - "
]
},
{
"cell_type": "code",
"metadata": {
"id": "ZvC57bbxwXxN"
},
"source": [
"# Case 1:\n",
"embedding = torch.nn.Embedding(num_embeddings=10, embedding_dim=30)\n",
"x = torch.randint(high=10, size=(1, 5))\n",
"print(\"x :\", x)\n",
"print(\"embedding(x) :\", embedding(x).shape)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "sMaqhMBgxe2C"
},
"source": [
"# Case 2\n",
"lstm = torch.nn.LSTM(1, 30, batch_first=True)\n",
"x = torch.randn(1, 5, 1)\n",
"print(\"x :\", x)\n",
"print(\"lstm(x) :\", lstm(x)[0].shape) # Let's take all timestep outputs of the LSTM"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "9IQHjki-yezX"
},
"source": [
"-------\n",
"As you can see, the output of Case 1 is an embedding of shape [1, 5, 30], and the output of Case 2 is an LSTM output (state `h` over all time steps), also of the same shape [1, 5, 30].\n",
"\n",
"Do they have the same shape? **Yes**. <br>If we do a Case 1 .shape == Case 2 .shape, will we get True as an output? **Yes**. <br>\n",
"Do they represent the same concept? **No**. <br>\n",
"\n",
"\n",
"The ability to recognize that the two tensors do not represent the same semantic information is precisely why we utilize Neural Types. It contains the information of both the shape and the semantic concept of what that tensor represents. If we performed a neural type check between the two outputs of those tensors, it would raise an error saying semantically they were different things (more technically, it would say that they are `INCOMPATIBLE` with each other)!\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ucP0hNI7vWrU"
},
"source": [
"--------\n",
"\n",
"You may have read of concepts such as [Named Tensors](https://pytorch.org/docs/stable/named_tensor.html). While conceptually similar, Neural Types attached by NeMo are not as tightly bound to the PyTorch ecosystem - practically any object of a class can be attached with a neural type!\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Uvf5oLt9zxSS"
},
"source": [
"## Neural Types - Usage\n",
"\n",
"Neural Types sound interesting, so how do we go about adding them? Let's take a few cases below. \n",
"\n",
"Neural Types are one of the core foundations of NeMo - you will find them in a vast majority of Neural Modules, and every NeMo Model will have its Neural Types defined. While they are entirely optional and not intrusive, NeMo takes great care to support it so that there is no semantic incompatibility between components being used by users."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eTizOBUg0qIB"
},
"source": [
"Let's start with a basic example of a type checked module."
]
},
{
"cell_type": "code",
"metadata": {
"id": "yp0FG8NJt1Jd"
},
"source": [
"from nemo.core.neural_types import NeuralType\n",
"from nemo.core.neural_types import *"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "3tsgs8Fp0-WV"
},
"source": [
"class EmbeddingModule(NeuralModule):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.embedding = torch.nn.Embedding(num_embeddings=10, embedding_dim=30)\n",
"\n",
" @typecheck()\n",
" def forward(self, x):\n",
" return self.embedding(x)\n",
"\n",
" @property\n",
" def input_types(self):\n",
" return {\n",
" 'x': NeuralType(axes=('B', 'T'), elements_type=Index())\n",
" }\n",
"\n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'y': NeuralType(axes=('B', 'T', 'C'), elements_type=EmbeddedTextType())\n",
" }"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "sY9GYEoD3Yy0"
},
"source": [
"To show the benefit of Neural Types, we are going to replicate the above cases inside NeuralModules.\n",
"\n",
"Let's discuss how we added type checking support to the above class.\n",
"\n",
"1) `forward` has a decorator `@typecheck()` on it.\n",
"\n",
"2) `input_types` and `output_types` properties are defined.\n",
"\n",
"That's it!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "on268fAX4LLU"
},
"source": [
"-------\n",
"\n",
"Let's expand on each of the above steps.\n",
"\n",
"- `@typecheck()` is a simple decorator that takes any class that inherits `Typing` (NeuralModule does this for us) and adds the two default properties of `input_types` and `output_types`, which by default returns None.\n",
"\n",
"The `@typecheck()` decorator's explicit use ensures that, by default, neural type checking is **disabled**. NeMo does not wish to intrude on the development process of models. So users can \"opt-in\" to type checking by overriding the two properties. Therefore, the decorator ensures that users are not burdened with type checking before they wish to have it.\n",
"\n",
"So what is `@typecheck()`? Simply put, you can wrap **any** function of a class that inherits `Typing` with this decorator, and it will look up the definition of the types of that class and enforce them. Typically, `torch.nn.Module` subclasses only implement `forward()` so it is most common to wrap that method, but `@typecheck()` is a very flexible decorator. Inside NeMo, we will show some advanced use cases (which are quite crucial to particular domains such as TTS)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "o9i1KugG5om7"
},
"source": [
"------\n",
"\n",
"As we see above, `@typecheck()` enforces the types. How then, do we provide this type of information to NeMo? \n",
"\n",
"By overriding `input_types` and `output_types` properties of the class, we can return a dictionary mapping a string name to a `NeuralType`.\n",
"\n",
"In the above case, we define a `NeuralType` as two components - \n",
"\n",
"- `axes`: This is the semantic information of the carried by the axes themselves. The most common axes information is from single character notation.\n",
"\n",
"> `B` = Batch <br>\n",
"> `C` / `D` - Channel / Dimension (treated the same) <br>\n",
"> `T` - Time <br>\n",
"> `H` / `W` - Height / Width <br>\n",
"\n",
"- `elements_type`: This is the semantic information of \"what the tensor represents\". All such types are derived from the basic `ElementType`, and merely subclassing `ElementType` allows us to build a hierarchy of custom semantic types that can be used by NeMo!\n",
"\n",
"Here, we declare that the input is an element_type of `Index` (index of the character in the vocabulary) and that the output is an element_type of `EmbeddedTextType` (the text embedding)"
]
},
{
"cell_type": "code",
"metadata": {
"id": "boxxMniv27vi"
},
"source": [
"embedding_module = EmbeddingModule()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "BgfDuBm27wiV"
},
"source": [
"Now let's construct the equivalent of the Case 2 above, but as a `NeuralModule`."
]
},
{
"cell_type": "code",
"metadata": {
"id": "SZZOOoCJ2-iV"
},
"source": [
"class LSTMModule(NeuralModule):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.lstm = torch.nn.LSTM(1, 30, batch_first=True)\n",
"\n",
" @typecheck()\n",
" def forward(self, x):\n",
" return self.lstm(x)\n",
"\n",
" @property\n",
" def input_types(self):\n",
" return {\n",
" 'x': NeuralType(axes=('B', 'T', 'C'), elements_type=SpectrogramType())\n",
" }\n",
"\n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'y': NeuralType(axes=('B', 'T', 'C'), elements_type=EncodedRepresentation())\n",
" }"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "7iIWIunz8IQq"
},
"source": [
"------\n",
"Here, we define the LSTM module from the Case 2 above.\n",
"\n",
"We changed the input to be a rank three tensor, now representing a \"SpectrogramType\". We intentionally keep it generic - it can be a `MelSpectrogramType` or a `MFCCSpectrogramType` as its input!\n",
"\n",
"The output of an LSTM is now an `EncodedRepresentation`. Practically, this can be the output of a CNN layer, a Transformer block, or in this case, an LSTM layer. We can, of course, specialize by subclassing EncodedRepresentation and then using that!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "6LlOJf0C8GN4"
},
"source": [
"lstm_module = LSTMModule()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "hj0wonSz8_0c"
},
"source": [
"------\n",
"Now for the test !"
]
},
{
"cell_type": "code",
"metadata": {
"id": "giLJlub78-Ja"
},
"source": [
"# Case 1 [ERROR CELL]\n",
"x1 = torch.randint(high=10, size=(1, 5))\n",
"print(\"x :\", x1)\n",
"print(\"embedding(x) :\", embedding_module(x1).shape)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "K-fhclja9WLr"
},
"source": [
"-----\n",
"You might be wondering why we get a `TypeError` right off the bat. This `TypeError` is raised by design.\n",
"\n",
"Positional arguments can cause significant issues during model development, mostly when the model/module design is not finalized. To reduce the potential for mistakes caused by wrong positional arguments and enforce the name of arguments provided to the function, `Typing` requires you to **call all of your type-checked functions by kwargs only**."
]
},
{
"cell_type": "code",
"metadata": {
"id": "2KUj_p6M9L-f"
},
"source": [
"# Case 1\n",
"print(\"x :\", x1)\n",
"print(\"embedding(x) :\", embedding_module(x=x1).shape)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "dirhWWvMRusx"
},
"source": [
"Now let's try the same for the `LSTMModule` in Case 2"
]
},
{
"cell_type": "code",
"metadata": {
"id": "FMu3B0-9-CqE"
},
"source": [
"# Case 2 [ERROR CELL]\n",
"x2 = torch.randn(1, 5, 1) # Input = [B=1, T=5, C=1]\n",
"print(\"x :\", x2)\n",
"print(\"lstm(x) :\", lstm_module(x=x2)[0].shape) # Let's take all timestep outputs of the LSTM"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "-OTLdR_4-isV"
},
"source": [
"-----\n",
"Now we get a type error stating that the number of output arguments provided does not match what is expected.\n",
"\n",
"What exactly is going on here? Well, inside our `LSTMModule` class, we declare the output types to be a single NeuralType - an `EncodedRepresentation` of shape [B, T, C].\n",
"\n",
"But the output of an LSTM layer is a tuple of \n",
"1) the encoded representation of shape [B, T, C]\n",
"2) another tuple containing two state values - the hidden state `h` and the cell state `c`, each of shape [num_layers * num_directions, B, C]!\n",
"\n",
"So the neural type system raises an error saying that the number of output arguments does not match what is expected.\n",
"\n",
"**NOTE**: The axis kind information of the two states will be represented by `D` to represent a general \"Dimension\" - since `num_layers` and `num_directions` are collapsed under a single axis. For NeMo, Axis types of `C` and `D` are equivalent and can be interchanged, so we will use `C` here to represent the hidden dimension of the LSTM and `D` to represent the merged axis `num_layers * num_directions`.\n",
"\n",
"Let's fix the above."
]
},
{
"cell_type": "code",
"metadata": {
"id": "q2u-keAM-d-B"
},
"source": [
"class CorrectLSTMModule(LSTMModule): # Let's inherit the wrong class to make it easy to override\n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'y': NeuralType(axes=('B', 'T', 'C'), elements_type=EncodedRepresentation()),\n",
" 'h_c': [NeuralType(axes=('D', 'B', 'C'), elements_type=EncodedRepresentation())],\n",
" }"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "a99NX0O8KMvW"
},
"source": [
"You should note that for the `h_c` neural type, we wrap it in a list - `[]`. NeMo, by default, assumes that each `NeuralType` corresponds to a single returned value. However, in the case of LSTMs, they produce a tuple of two state tensors.\n",
"\n",
"So we inform NeMo that this particular `NeuralType` is a single-dimensional list of items - and that each element of this list shares the same `NeuralType` and has the same shape.\n",
"\n",
"NeMo then ensures that the `h_c` is always a list of tensors. It will not check *how many* items are in the list, but will ensure that the returned value *must be a list containing zero or more items* - and that each of these items share the same `NeuralType`. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "GyPZH-fz_dG4"
},
"source": [
"lstm_module = CorrectLSTMModule()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "9whH50PE_Xyx"
},
"source": [
"# Case 2\n",
"x2 = torch.randn(1, 5, 1)\n",
"y2, (h, c) = lstm_module(x=x2)\n",
"print(\"x :\", x2)\n",
"print(\"lstm(x) :\", y2.shape) # The output of the LSTM RNN\n",
"print(\"hidden state (h) :\", h.shape) # The first hidden state of the LSTM RNN\n",
"print(\"hidden state (c) :\", c.shape) # The second hidden state of the LSTM RNN"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "cRueNvNY_jI3"
},
"source": [
"------\n",
"Great! So now, the type checking system is happy.\n",
"\n",
"If you looked closely, the outputs were ordinary Torch Tensors (this is good news; we don't want to be incompatible with torch Tensors after all!). So, where exactly is the type of information stored?\n",
"\n",
"When the `output_types` is overridden, and valid torch tensors are returned as a result, these tensors are attached with the attribute `neural_type`. Let's inspect this -"
]
},
{
"cell_type": "code",
"metadata": {
"id": "bGQ9XbWU_ffa"
},
"source": [
"emb_out = embedding_module(x=x1)\n",
"lstm_out = lstm_module(x=x2)[0]\n",
"\n",
"assert hasattr(emb_out, 'neural_type')\n",
"assert hasattr(lstm_out, 'neural_type')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "kEpBruSOScPJ"
},
"source": [
"print(\"Embedding tensor :\", emb_out.neural_type)\n",
"print(\"LSTM tensor :\", lstm_out.neural_type)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "BWTsqiAHAony"
},
"source": [
"-------\n",
"So we see that these tensors now have this attribute called `neural_type` and are the same shape.\n",
"\n",
"This exercise's entire goal was to assert that the two outputs are semantically **not** the same object, even if they are the same shape. \n",
"\n",
"Let's test this!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "8AU9FMtdATIm"
},
"source": [
"emb_out.neural_type.compare(lstm_out.neural_type)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "2cqnqAGIBCjA"
},
"source": [
"emb_out.neural_type == lstm_out.neural_type"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "HmH6B0mHDJqb"
},
"source": [
"## Neural Types - Limitations\n",
"\n",
"You might have noticed one interesting fact - our inputs were just `torch.Tensor` to both typed function calls, and they had no `neural_type` assigned to them.\n",
"\n",
"So why did the type check system not raise any error? \n",
"\n",
"This is to maintain compatibility - type checking is meant to work on a chain of function calls - and each of these functions should themselves be wrapped with the `@typecheck()` decorator. This is also done because we don't want to overtax the forward call with dozens of checks, and therefore we only type modules that perform some higher-order logical computation. \n",
"\n",
"------\n",
"\n",
"As an example, it is mostly unnecessary (but still possible) to type the input and output of every residual block of a ResNet model. However, it is practically important to type the encoder (no matter how many layers is inside it) and the decoder (the classification head) separately so that when one does fine-tuning, there is no semantic mismatch of the tensors input to the encoder and bound to the decoder."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6m28zSEKEjt_"
},
"source": [
"-------\n",
"For this case, since it would be impractical to extend a class to attach a type to the input tensor, we can take a shortcut and directly attach the neural type to the input!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "AGbKB4gJEzcU"
},
"source": [
"embedding_module = EmbeddingModule()\n",
"x1 = torch.randint(high=10, size=(1, 5))\n",
"\n",
"# Attach correct neural type\n",
"x1.neural_type = NeuralType(('B', 'T'), Index())\n",
"\n",
"print(\"embedding(x) :\", embedding_module(x=x1).shape)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "F0j-evylFM5j"
},
"source": [
"# Attach wrong neural type [ERROR CELL]\n",
"x1.neural_type = NeuralType(('B', 'T'), LabelsType())\n",
"\n",
"print(\"embedding(x) :\", embedding_module(x=x1).shape)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "StMPyg6oCC9B"
},
"source": [
"## Let's create the minGPT components\n",
"\n",
"Now that we have a somewhat firm grasp of neural type checking, let's begin porting the minGPT example code. Once again, most of the code will be a direct port from the [minGPT repository](https://github.com/karpathy/minGPT).\n",
"\n",
"Here, you will notice one thing. By just changing class imports, one `@typecheck()` on forward, and adding `input_types` and `output_types` (which are also entirely optional!), we are almost entirely done with the PyTorch Lightning port!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "raFkuSRaBAE0"
},
"source": [
"import math\n",
"from typing import List, Set, Dict, Tuple, Optional\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"from torch.nn import functional as F"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "yakGOXrzF1XW"
},
"source": [
"## Creating Element Types\n",
"\n",
"Till now, we have used the Neural Types provided by the NeMo core. But we need not be restricted to the pre-defined element types !\n",
"\n",
"Users have total flexibility in defining any hierarchy of element types as they please!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ybhLLVyUF0mo"
},
"source": [
"class AttentionType(EncodedRepresentation):\n",
" \"\"\"Basic Attention Element Type\"\"\"\n",
"\n",
"class SelfAttentionType(AttentionType):\n",
" \"\"\"Self Attention Element Type\"\"\"\n",
"\n",
"class CausalSelfAttentionType(SelfAttentionType):\n",
" \"\"\"Causal Self Attention Element Type\"\"\""
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "mONJRMdbZNSE"
},
"source": [
"## Creating the modules\n",
"\n",
"Neural Modules are generally top-level modules but can be used at any level of the module hierarchy.\n",
"\n",
"For demonstration, we will treat an encoder comprising a block of Causal Self Attention modules as a typed Neural Module. Of course, we can also treat each Causal Self Attention layer itself as a neural module if we require it, but top-level modules are generally preferred."
]
},
{
"cell_type": "code",
"metadata": {
"id": "w4oXpAL_CoDp"
},
"source": [
"class CausalSelfAttention(nn.Module):\n",
" \"\"\"\n",
" A vanilla multi-head masked self-attention layer with a projection at the end.\n",
" It is possible to use torch.nn.MultiheadAttention here but I am including an\n",
" explicit implementation here to show that there is nothing too scary here.\n",
" \"\"\"\n",
"\n",
" def __init__(self, n_embd, block_size, n_head, attn_pdrop, resid_pdrop):\n",
" super().__init__()\n",
" assert n_embd % n_head == 0\n",
" self.n_head = n_head\n",
" # key, query, value projections for all heads\n",
" self.key = nn.Linear(n_embd, n_embd)\n",
" self.query = nn.Linear(n_embd, n_embd)\n",
" self.value = nn.Linear(n_embd, n_embd)\n",
" # regularization\n",
" self.attn_drop = nn.Dropout(attn_pdrop)\n",
" self.resid_drop = nn.Dropout(resid_pdrop)\n",
" # output projection\n",
" self.proj = nn.Linear(n_embd, n_embd)\n",
" # causal mask to ensure that attention is only applied to the left in the input sequence\n",
" self.register_buffer(\"mask\", torch.tril(torch.ones(block_size, block_size))\n",
" .view(1, 1, block_size, block_size))\n",
" def forward(self, x, layer_past=None):\n",
" B, T, C = x.size()\n",
"\n",
" # calculate query, key, values for all heads in batch and move head forward to be the batch dim\n",
" k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)\n",
" q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)\n",
" v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)\n",
"\n",
" # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)\n",
" att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))\n",
" att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))\n",
" att = F.softmax(att, dim=-1)\n",
" att = self.attn_drop(att)\n",
" y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)\n",
" y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side\n",
"\n",
" # output projection\n",
" y = self.resid_drop(self.proj(y))\n",
" return y\n",
" \n",
"\n",
"class Block(nn.Module):\n",
" \"\"\" an unassuming Transformer block \"\"\"\n",
"\n",
" def __init__(self, n_embd, block_size, n_head, attn_pdrop, resid_pdrop):\n",
" super().__init__()\n",
" self.ln1 = nn.LayerNorm(n_embd)\n",
" self.ln2 = nn.LayerNorm(n_embd)\n",
" self.attn = CausalSelfAttention(n_embd, block_size, n_head, attn_pdrop, resid_pdrop)\n",
" self.mlp = nn.Sequential(\n",
" nn.Linear(n_embd, 4 * n_embd),\n",
" nn.GELU(),\n",
" nn.Linear(4 * n_embd, n_embd),\n",
" nn.Dropout(resid_pdrop),\n",
" )\n",
"\n",
" def forward(self, x):\n",
" x = x + self.attn(self.ln1(x))\n",
" x = x + self.mlp(self.ln2(x))\n",
" return x"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Mv0dyrLifkw0"
},
"source": [
"## Building the NeMo Model\n",
"\n",
"Since a NeMo Model is comprised of various parts, we are going to iterate on the model step by step inside this notebook. As such, we will have multiple intermediate NeMo \"Models\", which will be partial implementations, and they will inherit each other iteratively.\n",
"\n",
"In a complete implementation of a NeMo Model (as found in the NeMo collections), all of these components will generally be found in a single class.\n",
"\n",
"Let's start by inheriting `ModelPT` - the core class of a PyTorch NeMo Model, which inherits the PyTorch Lightning Module."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TxeG-qMrRgNU"
},
"source": [
"-------\n",
"**Remember**:\n",
"\n",
" - The NeMo equivalent of `torch.nn.Module` is the `NeuralModule.\n",
" - The NeMo equivalent of the `LightningModule` is `ModelPT`.\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0TsfmCYthMux"
},
"source": [
"import pytorch_lightning as ptl\n",
"from nemo.core import ModelPT\n",
"from omegaconf import OmegaConf"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "_ib2rSz2hjaP"
},
"source": [
"------\n",
"Next, let's construct the bare minimum implementation of the NeMo Model - just the constructor, the initializer of weights, and the forward method.\n",
"\n",
"Initially, we will follow the steps followed by the minGPT implementation, and progressively refactor for NeMo "
]
},
{
"cell_type": "code",
"metadata": {
"id": "98x9-Fh-HVwj"
},
"source": [
"class PTLGPT(ptl.LightningModule):\n",
" def __init__(self,\n",
" # model definition args\n",
" vocab_size: int, # size of the vocabulary (number of possible tokens)\n",
" block_size: int, # length of the model's context window in time\n",
" n_layer: int, # depth of the model; number of Transformer blocks in sequence\n",
" n_embd: int, # the \"width\" of the model, number of channels in each Transformer\n",
" n_head: int, # number of heads in each multi-head attention inside each Transformer block\n",
" # model optimization args\n",
" learning_rate: float = 3e-4, # the base learning rate of the model\n",
" weight_decay: float = 0.1, # amount of regularizing L2 weight decay on MatMul ops\n",
" betas: Tuple[float, float] = (0.9, 0.95), # momentum terms (betas) for the Adam optimizer\n",
" embd_pdrop: float = 0.1, # \\in [0,1]: amount of dropout on input embeddings\n",
" resid_pdrop: float = 0.1, # \\in [0,1]: amount of dropout in each residual connection\n",
" attn_pdrop: float = 0.1, # \\in [0,1]: amount of dropout on the attention matrix\n",
" ):\n",
" super().__init__()\n",
"\n",
" # save these for optimizer init later\n",
" self.learning_rate = learning_rate\n",
" self.weight_decay = weight_decay\n",
" self.betas = betas\n",
"\n",
" # input embedding stem: drop(content + position)\n",
" self.tok_emb = nn.Embedding(vocab_size, n_embd)\n",
" self.pos_emb = nn.Parameter(torch.zeros(1, block_size, n_embd))\n",
" self.drop = nn.Dropout(embd_pdrop)\n",
" # deep transformer: just a sequence of transformer blocks\n",
" self.blocks = nn.Sequential(*[Block(n_embd, block_size, n_head, attn_pdrop, resid_pdrop) for _ in range(n_layer)])\n",
" # decoder: at the end one more layernorm and decode the answers\n",
" self.ln_f = nn.LayerNorm(n_embd)\n",
" self.head = nn.Linear(n_embd, vocab_size, bias=False) # no need for extra bias due to one in ln_f\n",
"\n",
" self.block_size = block_size\n",
" self.apply(self._init_weights)\n",
"\n",
" print(\"number of parameters: %e\" % sum(p.numel() for p in self.parameters()))\n",
"\n",
" def forward(self, idx):\n",
" b, t = idx.size()\n",
" assert t <= self.block_size, \"Cannot forward, model block size is exhausted.\"\n",
"\n",
" # forward the GPT model\n",
" token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector\n",
" position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector\n",
" x = self.drop(token_embeddings + position_embeddings)\n",
" x = self.blocks(x)\n",
" x = self.ln_f(x)\n",
" logits = self.head(x)\n",
"\n",
" return logits\n",
"\n",
" def get_block_size(self):\n",
" return self.block_size\n",
"\n",
" def _init_weights(self, module):\n",
" \"\"\"\n",
" Vanilla model initialization:\n",
" - all MatMul weights \\in N(0, 0.02) and biases to zero\n",
" - all LayerNorm post-normalization scaling set to identity, so weight=1, bias=0\n",
" \"\"\"\n",
" if isinstance(module, (nn.Linear, nn.Embedding)):\n",
" module.weight.data.normal_(mean=0.0, std=0.02)\n",
" if isinstance(module, nn.Linear) and module.bias is not None:\n",
" module.bias.data.zero_()\n",
" elif isinstance(module, nn.LayerNorm):\n",
" module.bias.data.zero_()\n",
" module.weight.data.fill_(1.0)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "2bMf5SO7wmor"
},
"source": [
"------\n",
"Let's create a PyTorch Lightning Model above, just to make sure it works !"
]
},
{
"cell_type": "code",
"metadata": {
"id": "rrXIBzg4wutC"
},
"source": [
"m = PTLGPT(vocab_size=100, block_size=32, n_layer=1, n_embd=32, n_head=4)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZCcgn1bajPW8"
},
"source": [
"------\n",
"Now, let's convert the above easily into a NeMo Model.\n",
"\n",
"A NeMo Model constructor generally accepts only two things - \n",
"\n",
"1) `cfg`: An OmegaConf DictConfig object that defines precisely the components required by the model to define its neural network architecture, data loader setup, optimizer setup, and any additional components needed for the model itself.\n",
"\n",
"2) `trainer`: An optional Trainer from PyTorch Lightning if the NeMo model will be used for training. It can be set after construction (if required) using the `set_trainer` method. For this notebook, we will not be constructing the config for the Trainer object."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WQMTCB3kz0UA"
},
"source": [
"## Refactoring Neural Modules\n",
"\n",
"As we discussed above, Neural Modules are generally higher-level components of the Model and can potentially be replaced by equivalent Neural Modules.\n",
"\n",
"As we see above, the embedding modules, deep transformer decoder network, and final decoder layer have all been combined inside the PyTorch Lightning implementation constructor.\n",
"\n",
"------\n",
"\n",
"However, the final decoder module could have been an RNN instead of a simple Linear layer, or it could have been a 1D-CNN instead.\n",
"\n",
"Likewise, the deep transformer decoder could potentially have a different implementation of Self Attention modules.\n",
"\n",
"These changes cannot be easily implemented any more inside the above implementation. However, if we refactor these components into their respective NeuralModules, then we can easily replace them with equivalent modules we construct in the future!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EJj5sSkX0xHi"
},
"source": [
"### Refactoring the Embedding module\n",
"\n",
"Let's first refactor out the embedding module from the above implementation"
]
},
{
"cell_type": "code",
"metadata": {
"id": "uYwMyjqK05RL"
},
"source": [
"class GPTEmbedding(NeuralModule):\n",
" def __init__(self, vocab_size: int, n_embd: int, block_size: int, embd_pdrop: float = 0.0):\n",
" super().__init__()\n",
"\n",
" # input embedding stem: drop(content + position)\n",
" self.tok_emb = nn.Embedding(vocab_size, n_embd)\n",
" self.pos_emb = nn.Parameter(torch.zeros(1, block_size, n_embd))\n",
" self.drop = nn.Dropout(embd_pdrop)\n",
"\n",
" @typecheck()\n",
" def forward(self, idx):\n",
" b, t = idx.size()\n",
" \n",
" # forward the GPT model\n",
" token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector\n",
" position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector\n",
" x = self.drop(token_embeddings + position_embeddings)\n",
" return x\n",
"\n",
" @property\n",
" def input_types(self):\n",
" return {\n",
" 'idx': NeuralType(('B', 'T'), Index())\n",
" }\n",
"\n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'embeddings': NeuralType(('B', 'T', 'C'), EmbeddedTextType())\n",
" }"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "l5rOP6lyOyRt"
},
"source": [
"### Refactoring the Encoder\n",
"\n",
"Next, let's refactor the GPT Encoder - which is implemented as a multi layer Transformer (Decoder) network.\n",
"\n",
"------\n",
"It can be noted that we refer to the GPT \"Encoder\" module - but it is constructed by using Transformer \"Decoder\" blocks.\n",
"\n",
"***When we discuss Neural Modules - we are discussing an abstract module with a certain input neural type and a certain output neural type.***\n",
"\n",
"For us, the GPT \"Encoder\" neural module will accept any implementation, whose\n",
"\n",
"- input neural type is `NeuralType(('B', 'T', 'C'), EmbeddedTextType())`\n",
"\n",
"- output type is `NeuralType(('B', 'T', 'C'), EncodedRepresentation())`\n",
"\n",
"-----\n",
"One concrete implementation of such a GPT \"Encoder\" neural module is a Deep Transformer \"Decoder\" network."
]
},
{
"cell_type": "code",
"metadata": {
"id": "1QeQnQ_G2PwH"
},
"source": [
"class GPTTransformerEncoder(NeuralModule):\n",
" def __init__(self, n_embd: int, block_size: int, n_head: int, n_layer: int, attn_pdrop: float = 0.0, resid_pdrop: float = 0.0):\n",
" super().__init__()\n",
"\n",
" self.blocks = nn.Sequential(*[Block(n_embd, block_size, n_head, attn_pdrop, resid_pdrop) \n",
" for _ in range(n_layer)])\n",
" \n",
" @typecheck()\n",
" def forward(self, embed):\n",
" return self.blocks(embed)\n",
"\n",
" @property\n",
" def input_types(self):\n",
" return {\n",
" 'embed': NeuralType(('B', 'T', 'C'), EmbeddedTextType())\n",
" }\n",
"\n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'encoding': NeuralType(('B', 'T', 'C'), CausalSelfAttentionType())\n",
" }"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "NmCR3LK3QHum"
},
"source": [
"### Refactoring the Decoder\n",
"\n",
"Finally, let's refactor the Decoder - the small one-layer feed-forward network to decode the answer.\n",
"\n",
"-------\n",
"\n",
"Note an interesting detail - The `input_types` of the Decoder accepts the generic `EncoderRepresentation()`, where as the `neural_type` of the `GPTTransformerEncoder` has the `output_type` of `CausalSelfAttentionType`.\n",
"\n",
"This is semantically *not* a mismatch! As you can see above in the inheritance chart, we declare `EncodedRepresentation` -> `AttentionType` -> `SelfAttentionType` -> `CausalSelfAttentionType`. \n",
"\n",
"Such an inheritance hierarchy for the `element_type` allows future encoders (which also have a neural output type of at least `EncodedRepresentation`) to be swapped in place of the current GPT Causal Self Attention Encoder while keeping the rest of the NeMo model working just fine!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "VCPUu0EWQIBX"
},
"source": [
"class GPTDecoder(NeuralModule):\n",
" def __init__(self, n_embd: int, vocab_size: int):\n",
" super().__init__()\n",
" self.ln_f = nn.LayerNorm(n_embd)\n",
" self.head = nn.Linear(n_embd, vocab_size, bias=False) # no need for extra bias due to one in ln_f\n",
"\n",
" @typecheck()\n",
" def forward(self, encoding):\n",
" x = self.ln_f(encoding)\n",
" logits = self.head(x)\n",
" return logits\n",
"\n",
" @property\n",
" def input_types(self):\n",
" return {\n",
" 'encoding': NeuralType(('B', 'T', 'C'), EncodedRepresentation())\n",
" }\n",
" \n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'logits': NeuralType(('B', 'T', 'C'), LogitsType())\n",
" }\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "nYLMjlW0Sdy1"
},
"source": [
"### Refactoring the NeMo GPT Model\n",
"\n",
"Now that we have 3 NeuralModules for the embedding, the encoder, and the decoder, let's refactor the NeMo model to take advantage of this refactor!\n",
"\n",
"This time, we inherit from `ModelPT` instead of the general `LightningModule`."
]
},
{
"cell_type": "code",
"metadata": {
"id": "ZQlmtYU6iDwi"
},
"source": [
"class AbstractNeMoGPT(ModelPT):\n",
" def __init__(self, cfg: OmegaConf, trainer: ptl.Trainer = None):\n",
" super().__init__(cfg=cfg, trainer=trainer)\n",
"\n",
" # input embedding stem: drop(content + position)\n",
" self.embedding = self.from_config_dict(self.cfg.embedding)\n",
" # deep transformer: just a sequence of transformer blocks\n",
" self.encoder = self.from_config_dict(self.cfg.encoder)\n",
" # decoder: at the end one more layernorm and decode the answers\n",
" self.decoder = self.from_config_dict(self.cfg.decoder)\n",
"\n",
" self.block_size = self.cfg.embedding.block_size\n",
" self.apply(self._init_weights)\n",
"\n",
" print(\"number of parameters: %e\" % self.num_weights)\n",
"\n",
" @typecheck()\n",
" def forward(self, idx):\n",
" b, t = idx.size()\n",
" assert t <= self.block_size, \"Cannot forward, model block size is exhausted.\"\n",
"\n",
" # forward the GPT model\n",
" # Remember: Only kwargs are allowed !\n",
" e = self.embedding(idx=idx)\n",
" x = self.encoder(embed=e)\n",
" logits = self.decoder(encoding=x)\n",
"\n",
" return logits\n",
"\n",
" def get_block_size(self):\n",
" return self.block_size\n",
"\n",
" def _init_weights(self, module):\n",
" \"\"\"\n",
" Vanilla model initialization:\n",
" - all MatMul weights \\in N(0, 0.02) and biases to zero\n",
" - all LayerNorm post-normalization scaling set to identity, so weight=1, bias=0\n",
" \"\"\"\n",
" if isinstance(module, (nn.Linear, nn.Embedding)):\n",
" module.weight.data.normal_(mean=0.0, std=0.02)\n",
" if isinstance(module, nn.Linear) and module.bias is not None:\n",
" module.bias.data.zero_()\n",
" elif isinstance(module, nn.LayerNorm):\n",
" module.bias.data.zero_()\n",
" module.weight.data.fill_(1.0)\n",
"\n",
" @property\n",
" def input_types(self):\n",
" return {\n",
" 'idx': NeuralType(('B', 'T'), Index())\n",
" }\n",
"\n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'logits': NeuralType(('B', 'T', 'C'), LogitsType())\n",
" }"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "DFRmxWiSmdF3"
},
"source": [
"## Creating a config for a Model\n",
"\n",
"At first glance, not much changed compared to the PyTorch Lightning implementation above. Other than the constructor, which now accepts a config, nothing changed at all!\n",
"\n",
"NeMo operates on the concept of a NeMo Model being accompanied by a corresponding config dict (instantiated as an OmegaConf object). This enables us to prototype the model by utilizing Hydra rapidly. This includes various other benefits - such as hyperparameter optimization and serialization/deserialization of NeMo models.\n",
"\n",
"Let's look at how actually to construct such config objects!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "uygo0BEYjKuj"
},
"source": [
"# model definition args (required)\n",
"# ================================\n",
"# vocab_size: int # size of the vocabulary (number of possible tokens)\n",
"# block_size: int # length of the model's context window in time\n",
"# n_layer: int # depth of the model; number of Transformer blocks in sequence\n",
"# n_embd: int # the \"width\" of the model, number of channels in each Transformer\n",
"# n_head: int # number of heads in each multi-head attention inside each Transformer block \n",
"\n",
"# model definition args (optional)\n",
"# ================================\n",
"# embd_pdrop: float = 0.1, # \\in [0,1]: amount of dropout on input embeddings\n",
"# resid_pdrop: float = 0.1, # \\in [0,1]: amount of dropout in each residual connection\n",
"# attn_pdrop: float = 0.1, # \\in [0,1]: amount of dropout on the attention matrix"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "s4sdqRAFop-n"
},
"source": [
"------\n",
"As we look at the required parameters above, we need a way to tell OmegaConf that these values are currently not set, but the user should set them before we use them.\n",
"\n",
"OmegaConf supports such behavior using the `MISSING` value. A similar effect can be achieved in YAML configs by using `???` as a placeholder."
]
},
{
"cell_type": "code",
"metadata": {
"id": "XqLSZq7Soo2j"
},
"source": [
"from omegaconf import MISSING"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "JTH-1vu8TO7o"
},
"source": [
"# Let's create a utility for building the class path\n",
"def get_class_path(cls):\n",
" return f'{cls.__module__}.{cls.__name__}'"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "6xToaWAJUmtX"
},
"source": [
"### Structure of a Model config\n",
"\n",
"Let's first create a config for the common components of the model level config -"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ZCvLdOlMVLy_"
},
"source": [
"common_config = OmegaConf.create({\n",
" 'vocab_size': MISSING,\n",
" 'block_size': MISSING,\n",
" 'n_layer': MISSING,\n",
" 'n_embd': MISSING,\n",
" 'n_head': MISSING,\n",
"})"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "j8hvdKa4VmCV"
},
"source": [
"-----\n",
"The model config right now is still being built - it needs to contain a lot more details!\n",
"\n",
"A complete Model Config should have the sub-configs of all of its top-level modules as well. This means the configs of the `embedding`, `encoder`, and the `decoder`.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "v-2_QOZyVgrE"
},
"source": [
"### Structure of sub-module config\n",
"\n",
"For top-level models, we generally don't change the actual module very often, and instead, primarily change the hyperparameters of that model.\n",
"\n",
"So we will make use of `Hydra`'s Class instantiation method - which can easily be accessed via the class method `ModelPT.from_config_dict()`.\n",
"\n",
"Let's take a few examples below -"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ntsxQKH0pDac"
},
"source": [
"embedding_config = OmegaConf.create({\n",
" '_target_': get_class_path(GPTEmbedding),\n",
" 'vocab_size': '${model.vocab_size}',\n",
" 'n_embd': '${model.n_embd}',\n",
" 'block_size': '${model.block_size}',\n",
" 'embd_pdrop': 0.1\n",
"})\n",
"\n",
"encoder_config = OmegaConf.create({\n",
" '_target_': get_class_path(GPTTransformerEncoder),\n",
" 'n_embd': '${model.n_embd}',\n",
" 'block_size': '${model.block_size}',\n",
" 'n_head': '${model.n_head}',\n",
" 'n_layer': '${model.n_layer}',\n",
" 'attn_pdrop': 0.1,\n",
" 'resid_pdrop': 0.1\n",
"})\n",
"\n",
"decoder_config = OmegaConf.create({\n",
" '_target_': get_class_path(GPTDecoder),\n",
" # n_embd: int, vocab_size: int\n",
" 'n_embd': '${model.n_embd}',\n",
" 'vocab_size': '${model.vocab_size}'\n",
"})"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "qtloTqkqWhpl"
},
"source": [
"##### What is `_target_`?\n",
"--------\n",
"\n",
"In the above config, we see a `_target_` in the config. `_target_` is usually a full classpath to the actual class in the python package/user local directory. It is required for Hydra to locate and instantiate the model from its path correctly.\n",
"\n",
"So why do we want to set a classpath?\n",
"\n",
"In general, when developing models, we don't often change the encoder or the decoder, but we do change the hyperparameters of the encoder and decoder.\n",
"\n",
"This notation helps us keep the Model level declaration of the forward step neat and precise. It also logically helps us demark which parts of the model can be easily replaced - in the future, we can easily replace the encoder with some other type of self-attention block or the decoder with an RNN or 1D-CNN neural module (as long as they have the same Neural Type definition as the current blocks).\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ASDmcgE4XtQ4"
},
"source": [
"##### What is the `${}` syntax?\n",
"-------\n",
"\n",
"OmegaConf, and by extension, Hydra, supports Variable Interpolation. As you can see in the `__init__` of embedding, encoder, and decoder neural modules, they often share many parameters between each other.\n",
"\n",
"It would become tedious and error-prone to set each of these constructors' values separately in each of the embedding, encoder, and decoder configs.\n",
"\n",
"So instead, we define standard keys inside of the `model` level config and then interpolate these values inside of the respective configs!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zXvEcXGhZi5I"
},
"source": [
"### Attaching the model and module-level configs\n",
"\n",
"So now, we have a Model level and per-module level configs for the core components. Sub-module configs generally fall under the \"model\" namespace, but you have the flexibility to define the structure as you require.\n",
"\n",
"Let's attach them!\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "c8hvNeB_aDgi"
},
"source": [
"model_config = OmegaConf.create({\n",
" 'model': common_config\n",
"})\n",
"\n",
"# Then let's attach the sub-module configs\n",
"model_config.model.embedding = embedding_config\n",
"model_config.model.encoder = encoder_config\n",
"model_config.model.decoder = decoder_config"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "zIubuFcOpIB0"
},
"source": [
"-----\n",
"Let's print this config!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "2SyKNgp9pG0N"
},
"source": [
"print(OmegaConf.to_yaml(model_config))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "4PAA07EAauCn"
},
"source": [
"-----\n",
"Wait, why did OmegaConf not fill in the value of the variable interpolation for the configs yet?\n",
"\n",
"This is because OmegaConf takes a deferred approach to variable interpolation. First, we fill in temporary values of the required fields (those marked by `???`). Then, to force resolution ahead of time, we can use the following snippet - "
]
},
{
"cell_type": "code",
"metadata": {
"id": "0X4C76JyOAnN"
},
"source": [
"import copy"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ugxA0TPtbHVZ"
},
"source": [
"temp_config = copy.deepcopy(model_config)\n",
"temp_config.model.vocab_size = 10\n",
"temp_config.model.block_size = 4\n",
"temp_config.model.n_layer = 1\n",
"temp_config.model.n_embd = 32\n",
"temp_config.model.n_head = 4\n",
"\n",
"temp_config = OmegaConf.create(OmegaConf.to_container(temp_config, resolve=True))\n",
"print(OmegaConf.to_yaml(temp_config))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "V41RFIpEpiOu"
},
"source": [
"-----\n",
"Now that we have a config, let's try to create an object of the NeMo Model !"
]
},
{
"cell_type": "code",
"metadata": {
"id": "IIIVi2IfpsJ4"
},
"source": [
"# Let's work on a copy of the model config and update it before we send it into the Model.\n",
"cfg = copy.deepcopy(model_config)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "OllBhswPqQXq"
},
"source": [
"# Let's set the values of the config (for some plausible small model)\n",
"cfg.model.vocab_size = 100\n",
"cfg.model.block_size = 128\n",
"cfg.model.n_layer = 1\n",
"cfg.model.n_embd = 32\n",
"cfg.model.n_head = 4"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "QJm2LnTqqcIM"
},
"source": [
"print(OmegaConf.to_yaml(cfg))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "E7tpB8BcqeBO"
},
"source": [
"# Try to create a model with this config [ERROR CELL]\n",
"m = AbstractNeMoGPT(cfg.model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "cXOLhpxdq4Ni"
},
"source": [
"-----\n",
"\n",
"You will note that we added the `Abstract` tag for a reason to this NeMo Model and that when we try to instantiate it - it raises an error that we need to implement specific methods.\n",
"\n",
"1) `setup_training_data` & `setup_validation_data` - All NeMo models should implement two data loaders - the training data loader and the validation data loader. Optionally, they can go one step further and also implement the `setup_test_data` method to add support for evaluating the Model on its own.\n",
"\n",
"Why do we enforce this? NeMo Models are meant to be a unified, cohesive object containing the details about the neural network underlying that Model and the data loaders to train, validate, and optionally test those models.\n",
"\n",
"In doing so, once the Model is created/deserialized, it would take just a few more steps to train the Model from scratch / fine-tune/evaluate the Model on any data that the user provides, as long as this user-provided dataset is in a format supported by the Dataset / DataLoader that is used by this Model!\n",
"\n",
"2) `list_available_models` - This is a utility method to provide a list of pre-trained NeMo models to the user from the cloud.\n",
"\n",
"Typically, NeMo models can be easily packaged into a tar file (which we call a .nemo file in the earlier primer notebook). These tar files contain the model config + the pre-trained checkpoint weights of the Model, and can easily be downloaded from some cloud service. \n",
"\n",
"For this notebook, we will not be implementing this method.\n",
"\n",
"--------\n",
"Finally, let's create a concrete implementation of the above NeMo Model!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Vcwi1lO7t7Sm"
},
"source": [
"from nemo.core.classes.common import PretrainedModelInfo"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ckCxyVLYqrz0"
},
"source": [
"class BasicNeMoGPT(AbstractNeMoGPT):\n",
"\n",
" @classmethod\n",
" def list_available_models(cls) -> PretrainedModelInfo:\n",
" return None\n",
"\n",
" def setup_training_data(self, train_data_config: OmegaConf):\n",
" self._train_dl = None\n",
" \n",
" def setup_validation_data(self, val_data_config: OmegaConf):\n",
" self._validation_dl = None\n",
" \n",
" def setup_test_data(self, test_data_config: OmegaConf):\n",
" self._test_dl = None"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ofUoJ8DDvq_Y"
},
"source": [
"------\n",
"Now let's try to create an object of the `BasicNeMoGPT` model"
]
},
{
"cell_type": "code",
"metadata": {
"id": "G8iYQSC5vptU"
},
"source": [
"m = BasicNeMoGPT(cfg.model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "otvYW4TBxAju"
},
"source": [
"## Setting up train-val-test steps\n",
"\n",
"The above `BasicNeMoGPT` Model is a basic PyTorch Lightning Module, with some added functionality - \n",
"\n",
"1) Neural Type checks support - as defined in the Model as well as the internal modules.\n",
"\n",
"2) Save and restore of the Model (in the trivial case) to a tarfile.\n",
"\n",
"But as the Model is right now, it crucially does not support PyTorch Lightning's `Trainer`. As such, while this Model can be called manually, it cannot be easily trained or evaluated by using the PyTorch Lightning framework.\n",
"\n",
"------\n",
"\n",
"Let's begin adding support for this then -"
]
},
{
"cell_type": "code",
"metadata": {
"id": "QU3oQAVovxRg"
},
"source": [
"class BasicNeMoGPTWithSteps(BasicNeMoGPT):\n",
"\n",
" def step_(self, split, batch, batch_idx=None):\n",
" idx, targets = batch\n",
" logits = self(idx=idx)\n",
" loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))\n",
" key = 'loss' if split == 'train' else f\"{split}_loss\"\n",
" self.log(key, loss)\n",
" return {key: loss}\n",
"\n",
" def training_step(self, *args, **kwargs):\n",
" return self.step_('train', *args, **kwargs)\n",
"\n",
" def validation_step(self, *args, **kwargs):\n",
" return self.step_('val', *args, **kwargs)\n",
"\n",
" def test_step(self, *args, **kwargs):\n",
" return self.step_('test', *args, **kwargs)\n",
" \n",
" # This is useful for multiple validation data loader setup\n",
" def multi_validation_epoch_end(self, outputs, dataloader_idx: int = 0):\n",
" val_loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean()\n",
" return {'val_loss': val_loss_mean}\n",
"\n",
" # This is useful for multiple test data loader setup\n",
" def multi_test_epoch_end(self, outputs, dataloader_idx: int = 0):\n",
" test_loss_mean = torch.stack([x['test_loss'] for x in outputs]).mean()\n",
" return {'test_loss': test_loss_mean}"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "2Ki3kRxag511"
},
"source": [
"m = BasicNeMoGPTWithSteps(cfg=cfg.model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "f_7YziAw_Isu"
},
"source": [
"### Setup for Multi Validation and Multi Test data loaders\n",
"\n",
"As discussed in the NeMo Primer, NeMo has in-built support for multiple data loaders for validation and test steps. Therefore, as an example of how easy it is to add such support, we include the `multi_validation_epoch_end` and `multi_test_epoch_end` overrides.\n",
"\n",
"It is also practically essential to collate results from more than one distributed GPUs, and then aggregate results properly at the end of the epoch. NeMo strictly enforces the correct collation of results, even if you will work on only one device! Future-proofing is baked into the model design for this case!\n",
"\n",
"Therefore NeMo provides the above two generic methods to support aggregation and simultaneously support multiple datasets!\n",
"\n",
"**Please note, you can prepend your already existing `validation_epoch_end` and `test_epoch_end` implementations with the `multi_` in the name, and that alone is sufficient to enable multi-dataset and multi-GPU support!**\n",
"\n",
"------\n",
"**Note: To disable multi-dataset support, simply override `validation_epoch_end` and `test_epoch_end` instead of `multi_validation_epoch_end` and `multi_test_epoch_end`!**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QpfSn-YUh7GK"
},
"source": [
"## Setting up the optimizer / scheduler\n",
"\n",
"We are relatively close to reaching feature parity with the MinGPT Model! But we are missing a crucial piece - the optimizer.\n",
"\n",
"All NeMo Model's come with a default implementation of `setup_optimization()`, which will parse the provided model config to obtain the `optim` and `sched` sub-configs, and automatically configure the optimizer and scheduler.\n",
"\n",
"If training GPT was as simple as plugging in an Adam optimizer over all the parameters with a cosine weight decay schedule, we could do that from the config alone.\n",
"\n",
"-------\n",
"\n",
"But GPT is not such a trivial model - more specifically, it requires weight decay to be applied to the weight matrices but not to the biases, the embedding matrix, or the LayerNorm layers.\n",
"\n",
"We can drop the support that Nemo provides for such special cases and instead utilize the PyTorch Lightning method `configure_optimizers` to perform the same task.\n",
"\n",
"-------\n",
"\n",
"Note, for NeMo Models; the `configure_optimizers` is implemented as a trivial call to `setup_optimization()` followed by returning the generated optimizer and scheduler! So we can override the `configure_optimizer` method and manage the optimizer creation manually!\n",
"\n",
"NeMo's goal is to provide usable defaults for the general case and simply back off to either PyTorch Lightning or PyTorch nn.Module itself in cases when the additional flexibility becomes necessary!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "FgXkZQiVjnOv"
},
"source": [
"class BasicNeMoGPTWithOptim(BasicNeMoGPTWithSteps):\n",
"\n",
" def configure_optimizers(self):\n",
" \"\"\"\n",
" This long function is unfortunately doing something very simple and is being very defensive:\n",
" We are separating out all parameters of the model into two buckets: those that will experience\n",
" weight decay for regularization and those that won't (biases, and layernorm/embedding weights).\n",
" We are then returning the PyTorch optimizer object.\n",
" \"\"\"\n",
"\n",
" # separate out all parameters to those that will and won't experience weight decay\n",
" decay = set()\n",
" no_decay = set()\n",
" whitelist_weight_modules = (torch.nn.Linear, )\n",
" blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)\n",
" for mn, m in self.named_modules():\n",
" for pn, p in m.named_parameters():\n",
" fpn = '%s.%s' % (mn, pn) if mn else pn # full param name\n",
"\n",
" if pn.endswith('bias'):\n",
" # all biases will not be decayed\n",
" no_decay.add(fpn)\n",
" elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):\n",
" # weights of whitelist modules will be weight decayed\n",
" decay.add(fpn)\n",
" elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):\n",
" # weights of blacklist modules will NOT be weight decayed\n",
" no_decay.add(fpn)\n",
"\n",
" # special case the position embedding parameter in the root GPT module as not decayed\n",
" no_decay.add('embedding.pos_emb')\n",
"\n",
" # validate that we considered every parameter\n",
" param_dict = {pn: p for pn, p in self.named_parameters()}\n",
" inter_params = decay & no_decay\n",
" union_params = decay | no_decay\n",
" assert len(inter_params) == 0, \"parameters %s made it into both decay/no_decay sets!\" % (str(inter_params), )\n",
" assert len(param_dict.keys() - union_params) == 0, \"parameters %s were not separated into either decay/no_decay set!\" \\\n",
" % (str(param_dict.keys() - union_params), )\n",
"\n",
" # create the pytorch optimizer object\n",
" optim_groups = [\n",
" {\"params\": [param_dict[pn] for pn in sorted(list(decay))], \"weight_decay\": self.cfg.optim.weight_decay},\n",
" {\"params\": [param_dict[pn] for pn in sorted(list(no_decay))], \"weight_decay\": 0.0},\n",
" ]\n",
" optimizer = torch.optim.AdamW(optim_groups, lr=self.cfg.optim.lr, betas=self.cfg.optim.betas)\n",
" return optimizer\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "kARDwthakEQk"
},
"source": [
"m = BasicNeMoGPTWithOptim(cfg=cfg.model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "iB1kwctv2cYv"
},
"source": [
"-----\n",
"Now let's setup the config for the optimizer !"
]
},
{
"cell_type": "code",
"metadata": {
"id": "5K7zh9Cn2s2u"
},
"source": [
"OmegaConf.set_struct(cfg.model, False)\n",
"\n",
"optim_config = OmegaConf.create({\n",
" 'lr': 3e-4,\n",
" 'weight_decay': 0.1,\n",
" 'betas': [0.9, 0.95]\n",
"})\n",
"\n",
"cfg.model.optim = optim_config\n",
"\n",
"OmegaConf.set_struct(cfg.model, True)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "P31p8ABthsh0"
},
"source": [
"## Setting up the dataset / data loaders\n",
"\n",
"So we were able almost entirely to replicate the MinGPT implementation. \n",
"\n",
"Remember, NeMo models should contain all of the logic to load the Dataset and DataLoader for at least the train and validation step.\n",
"\n",
"We temporarily provided empty implementations to get around it till now, but let's fill that in now!\n",
"\n",
"-------\n",
"\n",
"**Note for datasets**: Below, we will show an example using a very small dataset called `tiny_shakespeare`, found at the original [char-rnn repository](https://github.com/karpathy/char-rnn), but practically you could use any text corpus. The one suggested in minGPT is available at http://mattmahoney.net/dc/textdata.html"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "q8dlOcZPkxM1"
},
"source": [
"### Creating the Dataset\n",
"\n",
"NeMo has Neural Type checking support, even for Datasets! It's just a minor change of the import in most cases and one difference in how we handle `collate_fn`.\n",
"\n",
"We could paste the dataset info from minGPT, and you'd only need to make 2 changes!\n",
"\n",
"-----\n",
"In this example, we will be writing a thin subclass over the datasets provided by `nlp` from HuggingFace!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "E-fswFkig9t4"
},
"source": [
"from nemo.core import Dataset\n",
"from torch.utils import data\n",
"from torch.utils.data.dataloader import DataLoader"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "-Z8XuPeClGNm"
},
"source": [
"class TinyShakespeareDataset(Dataset):\n",
"\n",
" def __init__(self, data_path, block_size, crop=None, override_vocab=None):\n",
"\n",
" # load the data and crop it appropriately\n",
" with open(data_path, 'r') as f:\n",
" if crop is None:\n",
" data = f.read()\n",
" else:\n",
" f.seek(crop[0])\n",
" data = f.read(crop[1])\n",
"\n",
" # build a vocabulary from data or inherit it\n",
" vocab = sorted(list(set(data))) if override_vocab is None else override_vocab\n",
"\n",
" # Add UNK\n",
" special_tokens = ['<PAD>', '<UNK>'] # We use just <UNK> and <PAD> in the call, but can add others.\n",
" if not override_vocab:\n",
" vocab = [*special_tokens, *vocab] # Update train vocab with special tokens\n",
"\n",
" data_size, vocab_size = len(data), len(vocab)\n",
" print('data of crop %s has %d characters, vocab of size %d.' % (str(crop), data_size, vocab_size))\n",
" print('Num samples in dataset : %d' % (data_size // block_size))\n",
"\n",
" self.stoi = { ch:i for i,ch in enumerate(vocab) }\n",
" self.itos = { i:ch for i,ch in enumerate(vocab) }\n",
" self.block_size = block_size\n",
" self.vocab_size = vocab_size\n",
" self.data = data\n",
" self.vocab = vocab\n",
" self.special_tokens = special_tokens\n",
"\n",
" def __len__(self):\n",
" return len(self.data) // self.block_size\n",
"\n",
" def __getitem__(self, idx):\n",
" # attempt to fetch a chunk of (block_size + 1) items, but (block_size) will work too\n",
" chunk = self.data[idx*self.block_size : min(len(self.data), (idx+1)*self.block_size + 1)]\n",
" # map the string into a sequence of integers\n",
" ixes = [self.stoi[s] if s in self.stoi else self.stoi['<UNK>'] for s in chunk ]\n",
" # if stars align (last idx and len(self.data) % self.block_size == 0), pad with <PAD>\n",
" if len(ixes) < self.block_size + 1:\n",
" assert len(ixes) == self.block_size # i believe this is the only way this could happen, make sure\n",
" ixes.append(self.stoi['<PAD>'])\n",
" dix = torch.tensor(ixes, dtype=torch.long)\n",
" return dix[:-1], dix[1:]\n",
"\n",
" @property\n",
" def output_types(self):\n",
" return {\n",
" 'input': NeuralType(('B', 'T'), Index()),\n",
" 'target': NeuralType(('B', 'T'), LabelsType())\n",
" }"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "7MEMR4TcmP5K"
},
"source": [
"------\n",
"We didn't have to change anything until here. How then is type-checking done? \n",
"\n",
"NeMo does type-checking inside of the collate function implementation itself! In this case, it is not necessary to override the `collate_fn` inside the Dataset, but if we did need to override it, **NeMo requires that the private method `_collate_fn` be overridden instead**.\n",
"\n",
"We can then use data loaders with minor modifications!\n",
"\n",
"**Also, there is no need to implement the `input_types` for Dataset, as they are the ones generating the input for the model!**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZeKXAknenVch"
},
"source": [
"-----\n",
"Let's prepare the dataset that we are going to use - Tiny Shakespeare from the following codebase [char-rnn](https://github.com/karpathy/char-rnn)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "VwsdXtVzo--t"
},
"source": [
"import os"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "QvKcDCvIl9-A"
},
"source": [
"if not os.path.exists('tiny-shakespeare.txt'):\n",
" !wget https://raw.githubusercontent.com/jcjohnson/torch-rnn/master/data/tiny-shakespeare.txt"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ynCwqDu6vK8P"
},
"source": [
"!head -n 5 tiny-shakespeare.txt"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "bfRL4t9_oS4C"
},
"source": [
"train_dataset = TinyShakespeareDataset('tiny-shakespeare.txt', cfg.model.block_size, crop=(0, int(1e6)))\n",
"val_dataset = TinyShakespeareDataset('tiny-shakespeare.txt', cfg.model.block_size, crop=(int(1e6), int(50e3)), override_vocab=train_dataset.vocab)\n",
"test_dataset = TinyShakespeareDataset('tiny-shakespeare.txt', cfg.model.block_size, crop=(int(1.05e6), int(100e3)), override_vocab=train_dataset.vocab)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "kIlCoZDksEDO"
},
"source": [
"### Setting up dataset/data loader support in the Model\n",
"\n",
"So we now know our data loader works. Let's integrate it as part of the Model itself!\n",
"\n",
"To do this, we use the three special attributes of the NeMo Model - `self._train_dl`, `self._validation_dl` and `self._test_dl`. Once you construct your DataLoader, place your data loader to these three variables. \n",
"\n",
"For multi-data loader support, the same applies! NeMo will automatically handle the management of multiple data loaders for you!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "SVSfIk_-rMSg"
},
"source": [
"class NeMoGPT(BasicNeMoGPTWithOptim):\n",
"\n",
" def _setup_data_loader(self, cfg):\n",
" if self.vocab is None:\n",
" override_vocab = None\n",
" else:\n",
" override_vocab = self.vocab\n",
"\n",
" dataset = TinyShakespeareDataset(\n",
" data_path=cfg.data_path,\n",
" block_size=cfg.block_size,\n",
" crop=tuple(cfg.crop) if 'crop' in cfg else None,\n",
" override_vocab=override_vocab\n",
" )\n",
"\n",
" if self.vocab is None:\n",
" self.vocab = dataset.vocab\n",
"\n",
" return DataLoader(\n",
" dataset=dataset,\n",
" batch_size=cfg.batch_size,\n",
" shuffle=cfg.shuffle,\n",
" collate_fn=dataset.collate_fn, # <-- this is necessary for type checking\n",
" pin_memory=cfg.pin_memory if 'pin_memory' in cfg else False,\n",
" num_workers=cfg.num_workers if 'num_workers' in cfg else 0\n",
" )\n",
" \n",
" def setup_training_data(self, train_data_config: OmegaConf):\n",
" self.vocab = None\n",
" self._train_dl = self._setup_data_loader(train_data_config)\n",
" \n",
" def setup_validation_data(self, val_data_config: OmegaConf):\n",
" self._validation_dl = self._setup_data_loader(val_data_config)\n",
" \n",
" def setup_test_data(self, test_data_config: OmegaConf):\n",
" self._test_dl = self._setup_data_loader(test_data_config)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ait4nLtIxS96"
},
"source": [
"### Creating the dataset / dataloader config\n",
"\n",
"The final step to setup this model is to add the `train_ds`, `validation_ds` and `test_ds` configs inside the model config!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "C6zcTqJixOOL"
},
"source": [
"OmegaConf.set_struct(cfg.model, False)\n",
"\n",
"# Set the data path and update vocabular size\n",
"cfg.model.data_path = 'tiny-shakespeare.txt'\n",
"cfg.model.vocab_size = train_dataset.vocab_size\n",
"\n",
"OmegaConf.set_struct(cfg.model, True)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "zlvThf7BysyT"
},
"source": [
"train_ds = OmegaConf.create({\n",
" 'data_path': '${model.data_path}',\n",
" 'block_size': '${model.block_size}',\n",
" 'crop': [0, int(1e6)],\n",
" 'batch_size': 64,\n",
" 'shuffle': True,\n",
"})\n",
"\n",
"validation_ds = OmegaConf.create({\n",
" 'data_path': '${model.data_path}',\n",
" 'block_size': '${model.block_size}',\n",
" 'crop': [int(1e6), int(50e3)],\n",
" 'batch_size': 4,\n",
" 'shuffle': False,\n",
"})\n",
"\n",
"test_ds = OmegaConf.create({\n",
" 'data_path': '${model.data_path}',\n",
" 'block_size': '${model.block_size}',\n",
" 'crop': [int(1.05e6), int(100e3)],\n",
" 'batch_size': 4,\n",
" 'shuffle': False,\n",
"})"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "QVVzR6WKyMT5"
},
"source": [
"# Attach to the model config\n",
"OmegaConf.set_struct(cfg.model, False)\n",
"\n",
"cfg.model.train_ds = train_ds\n",
"cfg.model.validation_ds = validation_ds\n",
"cfg.model.test_ds = test_ds\n",
"\n",
"OmegaConf.set_struct(cfg.model, True)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "nd_9_mxS0ET-"
},
"source": [
"# Let's see the config now !\n",
"print(OmegaConf.to_yaml(cfg))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "dlwSQENU0JxA"
},
"source": [
"# Let's try creating a model now !\n",
"model = NeMoGPT(cfg=cfg.model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Q_Mp4bhH0tR1"
},
"source": [
"-----\n",
"All the data loaders load properly ! Yay!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CZHDqCyo6uWd"
},
"source": [
"# Evaluate the model - end to end!\n",
"\n",
"Now that the data loaders have been set up, all that's left is to train and test the model! We have most of the components required by this model - the train, val and test data loaders, the optimizer, and the type-checked forward step to perform the train-validation-test steps! \n",
"\n",
"But training a GPT model from scratch is not the goal of this primer, so instead, let's do a sanity check by merely testing the model for a few steps using random initial weights.\n",
"\n",
"The above will ensure that - \n",
"\n",
"1) Our data loaders work as intended\n",
"\n",
"2) The type checking system assures us that our Neural Modules are performing their forward step correctly.\n",
"\n",
"3) The loss is calculated, and therefore the model runs end to end, ultimately supporting PyTorch Lightning."
]
},
{
"cell_type": "code",
"metadata": {
"id": "johk6Z0e0WEm"
},
"source": [
"if torch.cuda.is_available():\n",
" accelerator = 'gpu'\n",
"else:\n",
" accelerator = 'cpu'\n",
"\n",
"trainer = ptl.Trainer(devices=1, accelerator=accelerator, limit_test_batches=1.0)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "oqeeofEr1S8e"
},
"source": [
"trainer.test(model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "pqJy7esrA-Ha"
},
"source": [
"# Saving and restoring models\n",
"\n",
"NeMo internally keeps track of the model configuration, as well as the model checkpoints and parameters.\n",
"\n",
"As long as your NeMo follows the above general guidelines, you can call the `save_to` and `restore_from` methods to save and restore your models!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "DksG_-7G1Vbe"
},
"source": [
"model.save_to('gpt_model.nemo')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "JhjoFdCnBWVh"
},
"source": [
"!ls -d -- *.nemo"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "567txSF0BYXN"
},
"source": [
"temp_model = NeMoGPT.restore_from('gpt_model.nemo')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "YvnfG0kxBfTt"
},
"source": [
"# [ERROR CELL]\n",
"temp_model.setup_test_data(temp_model.cfg.test_ds)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "N0ckN44YB-1K"
},
"source": [
"-----\n",
"\n",
"Hmm, it seems it wasn't so easy in this case. Non-trivial models have non-trivial issues!\n",
"\n",
"Remember, our NeMoGPT model sets its self.vocab inside the `setup_train_data` step. But that depends on the vocabulary generated by the train set... which is **not** restored during model restoration (unless you call `setup_train_data` explicitly!).\n",
"\n",
"We can quickly resolve this issue by constructing an external data file to enable save and restore support, and NeMo supports that too! We will use the `register_artifact` API in NeMo to support external files being attached to the .nemo checkpoint."
]
},
{
"cell_type": "code",
"metadata": {
"id": "_Atyoc4NBjEV"
},
"source": [
"class NeMoGPTv2(NeMoGPT):\n",
" \n",
" def setup_training_data(self, train_data_config: OmegaConf):\n",
" self.vocab = None\n",
" self._train_dl = self._setup_data_loader(train_data_config)\n",
"\n",
" # Save the vocab into a text file for now\n",
" with open('vocab.txt', 'w') as f:\n",
" for token in self.vocab:\n",
" f.write(f\"{token}<SEP>\")\n",
" \n",
" # This is going to register the file into .nemo!\n",
" # When you later use .save_to(), it will copy this file into the tar file.\n",
" self.register_artifact('vocab_file', 'vocab.txt')\n",
" \n",
" def setup_validation_data(self, val_data_config: OmegaConf):\n",
" # This is going to try to find the same file, and if it fails, \n",
" # it will use the copy in .nemo\n",
" vocab_file = self.register_artifact('vocab_file', 'vocab.txt')\n",
" \n",
" with open(vocab_file, 'r') as f:\n",
" vocab = []\n",
" vocab = f.read().split('<SEP>')[:-1] # the -1 here is for the dangling <SEP> token in the file\n",
" self.vocab = vocab\n",
"\n",
" self._validation_dl = self._setup_data_loader(val_data_config)\n",
" \n",
" def setup_test_data(self, test_data_config: OmegaConf):\n",
" # This is going to try to find the same file, and if it fails, \n",
" # it will use the copy in .nemo\n",
" vocab_file = self.register_artifact('vocab_file', 'vocab.txt')\n",
"\n",
" with open(vocab_file, 'r') as f:\n",
" vocab = []\n",
" vocab = f.read().split('<SEP>')[:-1] # the -1 here is for the dangling <SEP> token in the file\n",
" self.vocab = vocab\n",
"\n",
" self._test_dl = self._setup_data_loader(test_data_config)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "mn09jsRZDusN"
},
"source": [
"# Let's try creating a model now !\n",
"model = NeMoGPTv2(cfg=cfg.model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "sQPIPySDD1K0"
},
"source": [
"# Now let's try to save and restore !\n",
"model.save_to('gpt_model.nemo')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "0YwCJ4xaJ3bU"
},
"source": [
"temp_model = NeMoGPTv2.restore_from('gpt_model.nemo')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "tcxwDIIWKKCQ"
},
"source": [
"temp_model.setup_multiple_test_data(temp_model.cfg.test_ds)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "j3Olm6ZTKRbO"
},
"source": [
"if torch.cuda.is_available():\n",
" accelerator = 'gpu'\n",
"else:\n",
" accelerator = 'cpu'\n",
"\n",
"trainer = ptl.Trainer(devices=1, accelerator=accelerator, limit_test_batches =1.0)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "_QE2SngCKV2p"
},
"source": [
"trainer.test(model)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "o2HpKzwKJ_MW"
},
"source": [
"------\n",
"There we go ! Now our models can be serialized and de-serialized without any issue, even with an external vocab file !"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ZjCV5u3_OO7a"
},
"source": [
""
],
"execution_count": null,
"outputs": []
}
]
} |