File size: 13,530 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
import pytest
from customization_dataset_preparation import (
convert_into_prompt_completion_only,
convert_into_template,
drop_duplicated_rows,
drop_unrequired_fields,
get_common_suffix,
get_prepared_filename,
parse_template,
recommend_hyperparameters,
show_first_example_in_df,
split_into_train_validation,
template_mapper,
validate_template,
warn_and_drop_long_samples,
warn_completion_is_not_empty,
warn_duplicated_rows,
warn_imbalanced_completion,
warn_low_n_samples,
warn_missing_suffix,
)
def test_recommend_hyperparameters():
df_100 = pd.DataFrame({'prompt': ['prompt'] * 100, 'completion': ['completion'] * 100})
assert recommend_hyperparameters(df_100) == "TODO: A batch_size=2 is recommended"
df_1000 = pd.DataFrame({'prompt': ['prompt'] * 1000, 'completion': ['completion'] * 1000})
assert recommend_hyperparameters(df_1000) == "TODO: A batch_size=2 is recommended"
df_10000 = pd.DataFrame({'prompt': ['prompt'] * 10000, 'completion': ['completion'] * 10000})
assert recommend_hyperparameters(df_10000) == "TODO: A batch_size=16 is recommended"
df_100000 = pd.DataFrame({'prompt': ['prompt'] * 100000, 'completion': ['completion'] * 100000})
assert recommend_hyperparameters(df_100000) == "TODO: A batch_size=128 is recommended"
def test_warn_completion_is_not_empty():
df_all_empty = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': [''] * 2})
msg_all_empty = (
"TODO: Note all completion fields are empty. This is possibly expected for inference but not for training"
)
assert warn_completion_is_not_empty(df_all_empty) == msg_all_empty
df_some_empty = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['', 'completion']})
msg_some_empty = f"""TODO: completion contains {1} empty values at rows ({[0]})
Please check the original file that the fields for prompt template are
not empty and rerun dataset validation"""
assert warn_completion_is_not_empty(df_some_empty) == msg_some_empty
df_no_empty = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion'] * 2})
assert warn_completion_is_not_empty(df_no_empty) is None
def test_warn_imbalanced_completion():
df_generation = pd.DataFrame(
{'prompt': [f'prompt{i}' for i in range(100)], 'completion': [f'completion{i}' for i in range(100)]}
)
assert warn_imbalanced_completion(df_generation) is None
df_classification_balanced = pd.DataFrame(
{'prompt': [f'prompt{i}' for i in range(100)], 'completion': [f'completion{i}' for i in range(5)] * 20}
)
msg_classification_balanced = (
f"There are {5} unique completions over {100} samples.\nThe five most common completions are:"
)
for i in range(5):
msg_classification_balanced += f"\n {20} samples ({20.0}%) with completion: completion{i}"
assert warn_imbalanced_completion(df_classification_balanced) == msg_classification_balanced
df_classification_imbalanced = pd.DataFrame(
{
'prompt': [f'prompt{i}' for i in range(100)],
'completion': ['completion0'] * 95 + [f'completion{i}' for i in range(5)],
}
)
msg_classification_imbalanced = (
f"There are {5} unique completions over {100} samples.\nThe five most common completions are:"
)
msg_classification_imbalanced += f"\n {96} samples ({96.0}%) with completion: completion0"
for i in range(1, 5):
msg_classification_imbalanced += f"\n {1} samples ({1.0}%) with completion: completion{i}"
assert warn_imbalanced_completion(df_classification_imbalanced) == msg_classification_imbalanced
def test_get_common_suffix():
df = pd.DataFrame(
{
'prompt': [f'prompt{i} answer:' for i in range(100)],
'completion': [f'completion{i}' for i in range(100)],
'empty_completion': [''] * 100,
'some_empty_completion': ['', 'completion'] * 50,
}
)
assert get_common_suffix(df.prompt) == " answer:"
assert get_common_suffix(df.completion) == ""
assert get_common_suffix(df.empty_completion) == ""
assert get_common_suffix(df.some_empty_completion) == ""
def test_warn_missing_suffix():
df_no_common = pd.DataFrame(
{'prompt': [f'prompt{i}' for i in range(100)], 'completion': [f'completion{i}' for i in range(100)],}
)
message = f"TODO: prompt does not have common suffix, please add one (e.g. \\n) at the end of prompt_template\n"
message += (
f"TODO: completion does not have common suffix, please add one (e.g. \\n) at the end of completion_template\n"
)
assert warn_missing_suffix(df_no_common) == message
df_common = pd.DataFrame(
{'prompt': [f'prompt{i} answer:' for i in range(100)], 'completion': [f'completion{i}\n' for i in range(100)],}
)
assert warn_missing_suffix(df_common) is None
def test_parse_template():
template_qa_prompt = "Context: {context}, Question: {question} Answer:"
template_qa_completion = "{answer}"
template_prompt = "{prompt}"
template_completion = "{completion}"
assert parse_template(template_qa_prompt) == ['context', 'question']
assert parse_template(template_qa_completion) == ['answer']
assert parse_template(template_prompt) == ['prompt']
assert parse_template(template_completion) == ['completion']
def test_validate_template():
template = "{prompt}"
template_missing_left = "prompt}"
template_missing_right = "{prompt"
template_twice = "{{prompt}}"
template_enclosed = "{prompt{enclosed}}"
assert validate_template(template) is None
with pytest.raises(ValueError):
validate_template(template_missing_left)
with pytest.raises(ValueError):
validate_template(template_missing_right)
with pytest.raises(ValueError):
validate_template(template_twice)
with pytest.raises(ValueError):
validate_template(template_enclosed)
def test_warn_duplicated_rows():
df_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion'] * 2})
message_duplicated = f"TODO: There are {1} duplicated rows "
message_duplicated += f"at rows ([1]) \n"
message_duplicated += "Please check the original file to make sure that is expected\n"
message_duplicated += "If it is not, please add the argument --drop_duplicate"
assert warn_duplicated_rows(df_duplicated) == message_duplicated
df_unique = pd.DataFrame({'prompt': ['prompt', 'prompt1'], 'completion': ['completion', 'completion1']})
assert warn_duplicated_rows(df_unique) is None
df_only_prompt_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion', 'completion1']})
assert warn_duplicated_rows(df_only_prompt_duplicated) is None
def test_drop_duplicated_rows():
df_deduplicated = pd.DataFrame({'prompt': ['prompt'], 'completion': ['completion']})
df_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion'] * 2})
message_duplicated = "There are 1 duplicated rows\n"
message_duplicated += "Removed 1 duplicate rows"
assert drop_duplicated_rows(df_duplicated)[0].equals(df_deduplicated)
assert drop_duplicated_rows(df_duplicated)[1] == message_duplicated
df_unique = pd.DataFrame({'prompt': ['prompt', 'prompt1'], 'completion': ['completion', 'completion1']})
assert drop_duplicated_rows(df_unique) == (df_unique, None)
df_only_prompt_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion', 'completion1']})
assert drop_duplicated_rows(df_only_prompt_duplicated) == (df_only_prompt_duplicated, None)
def test_template_mapper():
df = pd.DataFrame({'prompt': ['prompt sample'],})
template = "{prompt}"
field_names = ['prompt']
assert template_mapper(df.iloc[0], field_names, template) == 'prompt sample'
df_qa = pd.DataFrame({'question': ['question sample'], 'context': ['context sample']})
template_qa = "Context: {context} Question: {question} Answer:"
field_names_qa = ['context', 'question']
assert (
template_mapper(df_qa.iloc[0], field_names_qa, template_qa)
== "Context: context sample Question: question sample Answer:"
)
def test_drop_unrequired_fields():
df = pd.DataFrame(
{'question': ['question'], 'context': ['context'], 'prompt': ['prompt'], 'completion': ['completion']}
)
df_dropped_unnecessary_fields = pd.DataFrame({'prompt': ['prompt'], 'completion': ['completion']})
assert df_dropped_unnecessary_fields.equals(drop_unrequired_fields(df))
def test_convert_into_template():
df_non_existant_field_name = pd.DataFrame({'question': ['question']})
template = "Context: {context} Question: {question} Answer:"
with pytest.raises(ValueError):
convert_into_template(df_non_existant_field_name, template)
df = pd.DataFrame({'question': ['question sample'], 'context': ['context sample'],})
df_prompt = pd.DataFrame(
{
'question': ['question sample'],
'context': ['context sample'],
'prompt': ["Context: context sample Question: question sample Answer:"],
}
)
assert convert_into_template(df, template).equals(df_prompt)
def test_convert_into_prompt_completion_only():
df = pd.DataFrame({'question': ['question sample'], 'context': ['context sample'], 'answer': ['answer sample']})
df_prompt = pd.DataFrame(
{'prompt': ["Context: context sample Question: question sample Answer:"], 'completion': ["answer sample"]}
)
prompt_template = "Context: {context} Question: {question} Answer:"
completion_template = "{answer}"
assert df_prompt.equals(
convert_into_prompt_completion_only(
df, prompt_template=prompt_template, completion_template=completion_template
)
)
assert df_prompt.equals(convert_into_prompt_completion_only(df_prompt))
def get_indexes_of_long_examples(df, max_total_char_length):
long_examples = df.apply(lambda x: len(x.prompt) + len(x.completion) > max_total_char_length, axis=1)
return df.reset_index().index[long_examples].tolist()
def test_warn_and_drop_long_samples():
df = pd.DataFrame({'prompt': ['a' * 12000, 'a' * 9000, 'a'], 'completion': ['b' * 12000, 'b' * 2000, 'b']})
expected_df = pd.DataFrame({'prompt': ['a'], 'completion': ['b']})
message = f"""TODO: There are {2} / {3}
samples that have its prompt and completion too long
(over {10000} chars), which have been dropped.
If this proportion is too high, please prepare data again using the flag
--long_seq_model for use with a model with longer context length of 8,000 tokens"""
assert expected_df.equals(warn_and_drop_long_samples(df, 10000)[0])
assert warn_and_drop_long_samples(df, 10000)[1] == message
df_short = pd.DataFrame({'prompt': ['a'] * 2, 'completion': ['b'] * 2})
assert warn_and_drop_long_samples(df_short, 10000) == (df_short, None)
def test_warn_low_n_samples():
df_low = pd.DataFrame({'prompt': ['a'] * 10, 'completion': ['b'] * 10})
df_high = pd.DataFrame({'prompt': ['a'] * 100, 'completion': ['b'] * 100})
message = (
"TODO: We would recommend having more samples (>64) if possible but current_file only contains 10 samples. "
)
assert warn_low_n_samples(df_low) == message
assert warn_low_n_samples(df_high) is None
def test_show_first_example_in_df():
df = pd.DataFrame({'question': ['question sample'], 'context': ['context sample'], 'answer': ['answer sample']})
message = f"-->Column question:\nquestion sample\n"
message += f"-->Column context:\ncontext sample\n"
message += f"-->Column answer:\nanswer sample\n"
assert message == show_first_example_in_df(df)
def test_get_prepared_filename():
filename = "tmp/sample.jsonl"
prepared_filename = "tmp/sample_prepared.jsonl"
prepared_train_filename = "tmp/sample_prepared_train.jsonl"
prepared_val_filename = "tmp/sample_prepared_val.jsonl"
assert get_prepared_filename(filename) == prepared_filename
assert get_prepared_filename(filename, split_train_validation=True) == [
prepared_train_filename,
prepared_val_filename,
]
csv_filename = "tmp/sample.csv"
prepared_filename = "tmp/sample_prepared.jsonl"
assert get_prepared_filename(csv_filename) == prepared_filename
def test_split_into_train_validation():
df = pd.DataFrame({'prompt': ['a'] * 10, 'completion': ['b'] * 10})
df_train, df_val = split_into_train_validation(df, val_proportion=0.1)
assert len(df_train) == 9
assert len(df_val) == 1
df_train, df_val = split_into_train_validation(df, val_proportion=0.2)
assert len(df_train) == 8
assert len(df_val) == 2
|