File size: 13,530 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pandas as pd
import pytest
from customization_dataset_preparation import (
    convert_into_prompt_completion_only,
    convert_into_template,
    drop_duplicated_rows,
    drop_unrequired_fields,
    get_common_suffix,
    get_prepared_filename,
    parse_template,
    recommend_hyperparameters,
    show_first_example_in_df,
    split_into_train_validation,
    template_mapper,
    validate_template,
    warn_and_drop_long_samples,
    warn_completion_is_not_empty,
    warn_duplicated_rows,
    warn_imbalanced_completion,
    warn_low_n_samples,
    warn_missing_suffix,
)


def test_recommend_hyperparameters():
    df_100 = pd.DataFrame({'prompt': ['prompt'] * 100, 'completion': ['completion'] * 100})
    assert recommend_hyperparameters(df_100) == "TODO: A batch_size=2 is recommended"

    df_1000 = pd.DataFrame({'prompt': ['prompt'] * 1000, 'completion': ['completion'] * 1000})
    assert recommend_hyperparameters(df_1000) == "TODO: A batch_size=2 is recommended"

    df_10000 = pd.DataFrame({'prompt': ['prompt'] * 10000, 'completion': ['completion'] * 10000})
    assert recommend_hyperparameters(df_10000) == "TODO: A batch_size=16 is recommended"

    df_100000 = pd.DataFrame({'prompt': ['prompt'] * 100000, 'completion': ['completion'] * 100000})
    assert recommend_hyperparameters(df_100000) == "TODO: A batch_size=128 is recommended"


def test_warn_completion_is_not_empty():

    df_all_empty = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': [''] * 2})

    msg_all_empty = (
        "TODO: Note all completion fields are empty. This is possibly expected for inference but not for training"
    )

    assert warn_completion_is_not_empty(df_all_empty) == msg_all_empty

    df_some_empty = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['', 'completion']})

    msg_some_empty = f"""TODO: completion contains {1} empty values at rows ({[0]})
                Please check the original file that the fields for prompt template are 
                not empty and rerun dataset validation"""

    assert warn_completion_is_not_empty(df_some_empty) == msg_some_empty

    df_no_empty = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion'] * 2})

    assert warn_completion_is_not_empty(df_no_empty) is None


def test_warn_imbalanced_completion():
    df_generation = pd.DataFrame(
        {'prompt': [f'prompt{i}' for i in range(100)], 'completion': [f'completion{i}' for i in range(100)]}
    )
    assert warn_imbalanced_completion(df_generation) is None

    df_classification_balanced = pd.DataFrame(
        {'prompt': [f'prompt{i}' for i in range(100)], 'completion': [f'completion{i}' for i in range(5)] * 20}
    )

    msg_classification_balanced = (
        f"There are {5} unique completions over {100} samples.\nThe five most common completions are:"
    )
    for i in range(5):
        msg_classification_balanced += f"\n {20} samples ({20.0}%) with completion: completion{i}"

    assert warn_imbalanced_completion(df_classification_balanced) == msg_classification_balanced

    df_classification_imbalanced = pd.DataFrame(
        {
            'prompt': [f'prompt{i}' for i in range(100)],
            'completion': ['completion0'] * 95 + [f'completion{i}' for i in range(5)],
        }
    )

    msg_classification_imbalanced = (
        f"There are {5} unique completions over {100} samples.\nThe five most common completions are:"
    )
    msg_classification_imbalanced += f"\n {96} samples ({96.0}%) with completion: completion0"
    for i in range(1, 5):
        msg_classification_imbalanced += f"\n {1} samples ({1.0}%) with completion: completion{i}"

    assert warn_imbalanced_completion(df_classification_imbalanced) == msg_classification_imbalanced


def test_get_common_suffix():
    df = pd.DataFrame(
        {
            'prompt': [f'prompt{i} answer:' for i in range(100)],
            'completion': [f'completion{i}' for i in range(100)],
            'empty_completion': [''] * 100,
            'some_empty_completion': ['', 'completion'] * 50,
        }
    )
    assert get_common_suffix(df.prompt) == " answer:"
    assert get_common_suffix(df.completion) == ""
    assert get_common_suffix(df.empty_completion) == ""
    assert get_common_suffix(df.some_empty_completion) == ""


def test_warn_missing_suffix():
    df_no_common = pd.DataFrame(
        {'prompt': [f'prompt{i}' for i in range(100)], 'completion': [f'completion{i}' for i in range(100)],}
    )
    message = f"TODO: prompt does not have common suffix, please add one (e.g. \\n) at the end of prompt_template\n"
    message += (
        f"TODO: completion does not have common suffix, please add one (e.g. \\n) at the end of completion_template\n"
    )

    assert warn_missing_suffix(df_no_common) == message
    df_common = pd.DataFrame(
        {'prompt': [f'prompt{i} answer:' for i in range(100)], 'completion': [f'completion{i}\n' for i in range(100)],}
    )
    assert warn_missing_suffix(df_common) is None


def test_parse_template():
    template_qa_prompt = "Context: {context}, Question: {question} Answer:"
    template_qa_completion = "{answer}"
    template_prompt = "{prompt}"
    template_completion = "{completion}"
    assert parse_template(template_qa_prompt) == ['context', 'question']
    assert parse_template(template_qa_completion) == ['answer']
    assert parse_template(template_prompt) == ['prompt']
    assert parse_template(template_completion) == ['completion']


def test_validate_template():
    template = "{prompt}"
    template_missing_left = "prompt}"
    template_missing_right = "{prompt"
    template_twice = "{{prompt}}"
    template_enclosed = "{prompt{enclosed}}"
    assert validate_template(template) is None
    with pytest.raises(ValueError):
        validate_template(template_missing_left)
    with pytest.raises(ValueError):
        validate_template(template_missing_right)
    with pytest.raises(ValueError):
        validate_template(template_twice)
    with pytest.raises(ValueError):
        validate_template(template_enclosed)


def test_warn_duplicated_rows():
    df_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion'] * 2})

    message_duplicated = f"TODO: There are {1} duplicated rows "
    message_duplicated += f"at rows ([1]) \n"
    message_duplicated += "Please check the original file to make sure that is expected\n"
    message_duplicated += "If it is not, please add the argument --drop_duplicate"

    assert warn_duplicated_rows(df_duplicated) == message_duplicated

    df_unique = pd.DataFrame({'prompt': ['prompt', 'prompt1'], 'completion': ['completion', 'completion1']})
    assert warn_duplicated_rows(df_unique) is None

    df_only_prompt_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion', 'completion1']})
    assert warn_duplicated_rows(df_only_prompt_duplicated) is None


def test_drop_duplicated_rows():
    df_deduplicated = pd.DataFrame({'prompt': ['prompt'], 'completion': ['completion']})

    df_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion'] * 2})
    message_duplicated = "There are 1 duplicated rows\n"
    message_duplicated += "Removed 1 duplicate rows"

    assert drop_duplicated_rows(df_duplicated)[0].equals(df_deduplicated)
    assert drop_duplicated_rows(df_duplicated)[1] == message_duplicated

    df_unique = pd.DataFrame({'prompt': ['prompt', 'prompt1'], 'completion': ['completion', 'completion1']})
    assert drop_duplicated_rows(df_unique) == (df_unique, None)

    df_only_prompt_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion', 'completion1']})
    assert drop_duplicated_rows(df_only_prompt_duplicated) == (df_only_prompt_duplicated, None)


def test_template_mapper():

    df = pd.DataFrame({'prompt': ['prompt sample'],})

    template = "{prompt}"
    field_names = ['prompt']
    assert template_mapper(df.iloc[0], field_names, template) == 'prompt sample'

    df_qa = pd.DataFrame({'question': ['question sample'], 'context': ['context sample']})

    template_qa = "Context: {context} Question: {question} Answer:"
    field_names_qa = ['context', 'question']
    assert (
        template_mapper(df_qa.iloc[0], field_names_qa, template_qa)
        == "Context: context sample Question: question sample Answer:"
    )


def test_drop_unrequired_fields():
    df = pd.DataFrame(
        {'question': ['question'], 'context': ['context'], 'prompt': ['prompt'], 'completion': ['completion']}
    )

    df_dropped_unnecessary_fields = pd.DataFrame({'prompt': ['prompt'], 'completion': ['completion']})
    assert df_dropped_unnecessary_fields.equals(drop_unrequired_fields(df))


def test_convert_into_template():
    df_non_existant_field_name = pd.DataFrame({'question': ['question']})

    template = "Context: {context} Question: {question} Answer:"
    with pytest.raises(ValueError):
        convert_into_template(df_non_existant_field_name, template)

    df = pd.DataFrame({'question': ['question sample'], 'context': ['context sample'],})

    df_prompt = pd.DataFrame(
        {
            'question': ['question sample'],
            'context': ['context sample'],
            'prompt': ["Context: context sample Question: question sample Answer:"],
        }
    )
    assert convert_into_template(df, template).equals(df_prompt)


def test_convert_into_prompt_completion_only():
    df = pd.DataFrame({'question': ['question sample'], 'context': ['context sample'], 'answer': ['answer sample']})

    df_prompt = pd.DataFrame(
        {'prompt': ["Context: context sample Question: question sample Answer:"], 'completion': ["answer sample"]}
    )

    prompt_template = "Context: {context} Question: {question} Answer:"
    completion_template = "{answer}"

    assert df_prompt.equals(
        convert_into_prompt_completion_only(
            df, prompt_template=prompt_template, completion_template=completion_template
        )
    )
    assert df_prompt.equals(convert_into_prompt_completion_only(df_prompt))


def get_indexes_of_long_examples(df, max_total_char_length):
    long_examples = df.apply(lambda x: len(x.prompt) + len(x.completion) > max_total_char_length, axis=1)
    return df.reset_index().index[long_examples].tolist()


def test_warn_and_drop_long_samples():
    df = pd.DataFrame({'prompt': ['a' * 12000, 'a' * 9000, 'a'], 'completion': ['b' * 12000, 'b' * 2000, 'b']})

    expected_df = pd.DataFrame({'prompt': ['a'], 'completion': ['b']})
    message = f"""TODO: There are {2} / {3} 
        samples that have its prompt and completion too long 
        (over {10000} chars), which have been dropped.
        If this proportion is too high, please prepare data again using the flag 
        --long_seq_model for use with a model with longer context length of 8,000 tokens"""

    assert expected_df.equals(warn_and_drop_long_samples(df, 10000)[0])
    assert warn_and_drop_long_samples(df, 10000)[1] == message

    df_short = pd.DataFrame({'prompt': ['a'] * 2, 'completion': ['b'] * 2})

    assert warn_and_drop_long_samples(df_short, 10000) == (df_short, None)


def test_warn_low_n_samples():
    df_low = pd.DataFrame({'prompt': ['a'] * 10, 'completion': ['b'] * 10})

    df_high = pd.DataFrame({'prompt': ['a'] * 100, 'completion': ['b'] * 100})

    message = (
        "TODO: We would recommend having more samples (>64) if possible but current_file only contains 10 samples. "
    )
    assert warn_low_n_samples(df_low) == message
    assert warn_low_n_samples(df_high) is None


def test_show_first_example_in_df():
    df = pd.DataFrame({'question': ['question sample'], 'context': ['context sample'], 'answer': ['answer sample']})

    message = f"-->Column question:\nquestion sample\n"
    message += f"-->Column context:\ncontext sample\n"
    message += f"-->Column answer:\nanswer sample\n"

    assert message == show_first_example_in_df(df)


def test_get_prepared_filename():
    filename = "tmp/sample.jsonl"
    prepared_filename = "tmp/sample_prepared.jsonl"
    prepared_train_filename = "tmp/sample_prepared_train.jsonl"
    prepared_val_filename = "tmp/sample_prepared_val.jsonl"
    assert get_prepared_filename(filename) == prepared_filename
    assert get_prepared_filename(filename, split_train_validation=True) == [
        prepared_train_filename,
        prepared_val_filename,
    ]
    csv_filename = "tmp/sample.csv"
    prepared_filename = "tmp/sample_prepared.jsonl"
    assert get_prepared_filename(csv_filename) == prepared_filename


def test_split_into_train_validation():
    df = pd.DataFrame({'prompt': ['a'] * 10, 'completion': ['b'] * 10})
    df_train, df_val = split_into_train_validation(df, val_proportion=0.1)
    assert len(df_train) == 9
    assert len(df_val) == 1

    df_train, df_val = split_into_train_validation(df, val_proportion=0.2)
    assert len(df_train) == 8
    assert len(df_val) == 2