File size: 7,034 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import sys
import time
from pathlib import Path
import numpy as np
import scipy.io.wavfile as wav
import torch
from joblib import Parallel, delayed
from tqdm import tqdm
from utils import get_segments
import nemo.collections.asr as nemo_asr
parser = argparse.ArgumentParser(description="CTC Segmentation")
parser.add_argument("--output_dir", default="output", type=str, help="Path to output directory")
parser.add_argument(
"--data",
type=str,
required=True,
help="Path to directory with audio files and associated transcripts (same respective names only formats are "
"different or path to wav file (transcript should have the same base name and be located in the same folder"
"as the wav file.",
)
parser.add_argument("--window_len", type=int, default=8000, help="Window size for ctc segmentation algorithm")
parser.add_argument("--sample_rate", type=int, default=16000, help="Sampling rate, Hz")
parser.add_argument(
"--model", type=str, default="QuartzNet15x5Base-En", help="Path to model checkpoint or pre-trained model name",
)
parser.add_argument("--debug", action="store_true", help="Flag to enable debugging messages")
parser.add_argument(
"--num_jobs",
default=-2,
type=int,
help="The maximum number of concurrently running jobs, `-2` - all CPUs but one are used",
)
logger = logging.getLogger("ctc_segmentation") # use module name
if __name__ == "__main__":
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
# setup logger
log_dir = os.path.join(args.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"ctc_segmentation_{args.window_len}.log")
if os.path.exists(log_file):
os.remove(log_file)
level = "DEBUG" if args.debug else "INFO"
logger = logging.getLogger("CTC")
file_handler = logging.FileHandler(filename=log_file)
stdout_handler = logging.StreamHandler(sys.stdout)
handlers = [file_handler, stdout_handler]
logging.basicConfig(handlers=handlers, level=level)
if os.path.exists(args.model):
asr_model = nemo_asr.models.EncDecCTCModel.restore_from(args.model)
elif args.model in nemo_asr.models.EncDecCTCModel.get_available_model_names():
asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(args.model, strict=False)
else:
try:
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(args.model)
except:
raise ValueError(
f"Provide path to the pretrained checkpoint or choose from {nemo_asr.models.EncDecCTCModel.get_available_model_names()}"
)
bpe_model = isinstance(asr_model, nemo_asr.models.EncDecCTCModelBPE)
# get tokenizer used during training, None for char based models
if bpe_model:
tokenizer = asr_model.tokenizer
else:
tokenizer = None
# extract ASR vocabulary and add blank symbol
vocabulary = ["ε"] + list(asr_model.cfg.decoder.vocabulary)
logging.debug(f"ASR Model vocabulary: {vocabulary}")
data = Path(args.data)
output_dir = Path(args.output_dir)
if os.path.isdir(data):
audio_paths = data.glob("*.wav")
data_dir = data
else:
audio_paths = [Path(data)]
data_dir = Path(os.path.dirname(data))
all_log_probs = []
all_transcript_file = []
all_segment_file = []
all_wav_paths = []
segments_dir = os.path.join(args.output_dir, "segments")
os.makedirs(segments_dir, exist_ok=True)
index_duration = None
for path_audio in audio_paths:
logging.info(f"Processing {path_audio.name}...")
transcript_file = os.path.join(data_dir, path_audio.name.replace(".wav", ".txt"))
segment_file = os.path.join(
segments_dir, f"{args.window_len}_" + path_audio.name.replace(".wav", "_segments.txt")
)
if not os.path.exists(transcript_file):
logging.info(f"{transcript_file} not found. Skipping {path_audio.name}")
continue
try:
sample_rate, signal = wav.read(path_audio)
if len(signal) == 0:
logging.error(f"Skipping {path_audio.name}")
continue
assert (
sample_rate == args.sample_rate
), f"Sampling rate of the audio file {path_audio} doesn't match --sample_rate={args.sample_rate}"
original_duration = len(signal) / sample_rate
logging.debug(f"len(signal): {len(signal)}, sr: {sample_rate}")
logging.debug(f"Duration: {original_duration}s, file_name: {path_audio}")
log_probs = asr_model.transcribe(paths2audio_files=[str(path_audio)], batch_size=1, logprobs=True)[0]
# move blank values to the first column (ctc-package compatibility)
blank_col = log_probs[:, -1].reshape((log_probs.shape[0], 1))
log_probs = np.concatenate((blank_col, log_probs[:, :-1]), axis=1)
all_log_probs.append(log_probs)
all_segment_file.append(str(segment_file))
all_transcript_file.append(str(transcript_file))
all_wav_paths.append(path_audio)
if index_duration is None:
index_duration = len(signal) / log_probs.shape[0] / sample_rate
except Exception as e:
logging.error(e)
logging.error(f"Skipping {path_audio.name}")
continue
asr_model_type = type(asr_model)
del asr_model
torch.cuda.empty_cache()
if len(all_log_probs) > 0:
start_time = time.time()
normalized_lines = Parallel(n_jobs=args.num_jobs)(
delayed(get_segments)(
all_log_probs[i],
all_wav_paths[i],
all_transcript_file[i],
all_segment_file[i],
vocabulary,
tokenizer,
bpe_model,
index_duration,
args.window_len,
log_file=log_file,
debug=args.debug,
)
for i in tqdm(range(len(all_log_probs)))
)
total_time = time.time() - start_time
logger.info(f"Total execution time: ~{round(total_time/60)}min")
logger.info(f"Saving logs to {log_file}")
if os.path.exists(log_file):
with open(log_file, "r") as f:
lines = f.readlines()
|