File size: 4,450 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import shutil

import pytest
import torch
from omegaconf import OmegaConf
from pytorch_lightning import Trainer

from nemo.core import ModelPT
from nemo.utils import logging
from nemo.utils.exp_manager import CallbackParams, ExpManagerConfig, StatelessTimer, exp_manager


class OnesDataset(torch.utils.data.Dataset):
    def __init__(self, dataset_len):
        super().__init__()
        self.__dataset_len = dataset_len

    def __getitem__(self, *args):
        return torch.ones(2)

    def __len__(self):
        return self.__dataset_len


class ExampleModel(ModelPT):
    def __init__(self, *args, **kwargs):
        cfg = OmegaConf.structured({})
        super().__init__(cfg, trainer=kwargs.get('trainer', None))
        # dummy parameter in order to allow DDP to execute
        self.l1 = torch.nn.modules.Linear(in_features=2, out_features=1)

    def train_dataloader(self):
        dataset = OnesDataset(10000)
        return torch.utils.data.DataLoader(dataset, batch_size=2, num_workers=4)

    def val_dataloader(self):
        dataset = OnesDataset(10)
        return torch.utils.data.DataLoader(dataset, batch_size=2, num_workers=4)

    def predict_dataloader(self):
        dataset = OnesDataset(10)
        return torch.utils.data.DataLoader(dataset, batch_size=2, num_workers=4)

    def forward(self, batch):
        return (self.l1(batch) - batch.mean(dim=1)).mean()

    def validation_step(self, batch, batch_idx):
        return (self.l1(batch) - batch.mean(dim=1)).mean()

    def training_step(self, batch, batch_idx):
        return (self.l1(batch) - batch.mean(dim=1)).mean()

    def list_available_models(self):
        pass

    def setup_training_data(self):
        pass

    def setup_validation_data(self):
        pass

    def validation_epoch_end(self, loss):
        if not loss:
            return
        self.log("val_loss", torch.stack(loss).mean(), sync_dist=True)


class TestStatelessTimer:
    def setup_model(self):
        # Stateless timer for 3 seconds.
        # Max steps shouldn't matter for it should stop in 3 seconds based on the timer.
        # Val check interval makes sure a checkpoint is written and can be restored from.
        callback_params = CallbackParams()
        callback_params.monitor = "val_loss"
        callback_params.save_top_k = 1
        trainer = Trainer(
            devices=1,
            val_check_interval=5,
            max_steps=10000,
            accelerator='gpu',
            strategy='ddp',
            logger=None,
            enable_checkpointing=False,
        )
        exp_manager_cfg = ExpManagerConfig(
            explicit_log_dir='./ptl_stateless_timer_check/',
            use_datetime_version=False,
            version="",
            resume_ignore_no_checkpoint=True,
            create_checkpoint_callback=True,
            checkpoint_callback_params=callback_params,
            resume_if_exists=True,
            max_time_per_run="00:00:00:03",
        )
        exp_manager(trainer, cfg=OmegaConf.structured(exp_manager_cfg))
        model = ExampleModel(trainer=trainer)
        trainer.fit(model)
        return trainer

    def cleanup(self):
        if os.path.exists('./ptl_stateless_timer_check'):
            shutil.rmtree('./ptl_stateless_timer_check', ignore_errors=True)

    @pytest.mark.run_only_on('GPU')
    @pytest.mark.unit
    def test_stateless_timer(self):
        self.cleanup()
        trainer = self.setup_model()
        global_step_1 = trainer.global_step
        trainer = self.setup_model()
        global_step_2 = trainer.global_step
        trainer = self.setup_model()
        global_step_3 = trainer.global_step
        logging.info(f"Global steps : {global_step_1}, {global_step_2}, {global_step_3}")
        assert global_step_3 > global_step_2 > global_step_1
        self.cleanup()