File size: 26,325 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import re
from pathlib import Path
from typing import Any
import pytest
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf
from omegaconf.errors import OmegaConfBaseException
from pytorch_lightning import Callback
from pytorch_lightning.loops import TrainingEpochLoop
from nemo.constants import NEMO_ENV_VARNAME_VERSION
from nemo.core.classes import ModelPT
from nemo.utils.exp_manager import (
CheckpointMisconfigurationError,
LoggerMisconfigurationError,
NotFoundError,
exp_manager,
)
class MyTestOptimizer(torch.optim.Optimizer):
def __init__(self, params):
self._step = 0
super().__init__(params, {})
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group['params']:
if self._step == 0:
p.data = 0.1 * torch.ones(p.shape)
elif self._step == 1:
p.data = 0.0 * torch.ones(p.shape)
else:
p.data = 0.01 * torch.ones(p.shape)
self._step += 1
return loss
class DoNothingOptimizer(torch.optim.Optimizer):
def __init__(self, params):
self._step = 0
super().__init__(params, {})
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
self._step += 1
return loss
class OnesDataset(torch.utils.data.Dataset):
def __init__(self, dataset_len):
super().__init__()
self.__dataset_len = dataset_len
def __getitem__(self, *args):
return torch.ones(2)
def __len__(self):
return self.__dataset_len
class ExampleModel(ModelPT):
def __init__(self, *args, **kwargs):
cfg = OmegaConf.structured({})
super().__init__(cfg)
pl.seed_everything(1234)
self.l1 = torch.nn.modules.Linear(in_features=2, out_features=1)
def train_dataloader(self):
dataset = OnesDataset(2)
return torch.utils.data.DataLoader(dataset, batch_size=2, num_workers=8)
def val_dataloader(self):
dataset = OnesDataset(10)
return torch.utils.data.DataLoader(dataset, batch_size=2, num_workers=8)
def forward(self, batch):
output = self.l1(batch)
output = torch.nn.functional.l1_loss(output, torch.zeros(output.size()).to(output.device))
return output
def validation_step(self, batch, batch_idx):
return self(batch)
def training_step(self, batch, batch_idx):
return self(batch)
def configure_optimizers(self):
return MyTestOptimizer(self.parameters())
# return torch.optim.Adam(self.parameters(), lr=0.1)
def list_available_models(self):
pass
def setup_training_data(self):
pass
def setup_validation_data(self):
pass
def validation_epoch_end(self, loss):
self.log("val_loss", torch.stack(loss).mean())
class DoNothingModel(ExampleModel):
def configure_optimizers(self):
return DoNothingOptimizer(self.parameters())
class TestExpManager:
@pytest.mark.unit
def test_omegaconf(self):
"""Ensure omegaconf raises an error when an unexcepted argument is passed"""
with pytest.raises(OmegaConfBaseException):
exp_manager(pl.Trainer(accelerator='cpu'), {"unused": 1})
@pytest.mark.unit
def test_trainer_loggers(self, tmp_path):
""" Test that a trainer with logger errors out with a number of arguments. Test that it works with
create_tensorboard_logger set to False
"""
test_trainer = pl.Trainer(accelerator='cpu') # Should create logger and modelcheckpoint
with pytest.raises(LoggerMisconfigurationError): # Fails because exp_manager defaults to trainer
exp_manager(test_trainer, {"exp_dir": str(tmp_path)})
with pytest.raises(LoggerMisconfigurationError): # Fails because exp_manager defaults to trainer
exp_manager(test_trainer, {"explicit_log_dir": str(tmp_path)})
with pytest.raises(LoggerMisconfigurationError): # Fails because exp_manager defaults to trainer
exp_manager(test_trainer, {"resume_if_exists": True})
# Check that exp_manager uses trainer.logger, it's exp_dir, name, and version
log_dir = exp_manager(test_trainer, {"create_tensorboard_logger": False, "create_checkpoint_callback": False})
assert log_dir.resolve() == Path("./lightning_logs/version_0").resolve()
assert Path("./lightning_logs").exists()
assert Path("./lightning_logs/version_0").exists()
# Check that a trainer without a logger gets a logger attached to it
test_trainer = pl.Trainer(accelerator='cpu', logger=False)
log_dir = exp_manager(
test_trainer,
{"create_tensorboard_logger": True, "create_checkpoint_callback": False, "exp_dir": str(tmp_path)},
)
assert isinstance(test_trainer.logger, pl.loggers.TensorBoardLogger)
test_trainer = pl.Trainer(accelerator='cpu', logger=False)
# Check that a create_wandb_logger=True errors out unless wandb_logger_kwargs is passed.
with pytest.raises(ValueError):
log_dir = exp_manager(
test_trainer,
{
"create_tensorboard_logger": False,
"create_checkpoint_callback": False,
"exp_dir": str(tmp_path),
"create_wandb_logger": True,
},
)
# Check that a WandbLogger is attached to logger if create_wandb_logger=True and wandb_logger_kwargs has name
# and project
log_dir = exp_manager(
test_trainer,
{
"create_tensorboard_logger": False,
"create_checkpoint_callback": False,
"exp_dir": str(tmp_path),
"create_wandb_logger": True,
"wandb_logger_kwargs": {"name": "", "project": "", "offline": True},
},
)
assert isinstance(test_trainer.logger, pl.loggers.WandbLogger)
@pytest.mark.unit
def test_checkpoint_configurations(self):
""" Test that trainer creating modelcheckpoint and asking exp_manager to do it too results in errors, but
is error free if only one is asked to do so.
"""
disable_tb_logger = {"create_tensorboard_logger": False}
test_trainer = pl.Trainer(accelerator='cpu') # Should create logger and modelcheckpoint
with pytest.raises(CheckpointMisconfigurationError): # Fails because both try to create modelcheckpoint
exp_manager(test_trainer, disable_tb_logger)
# Should succeed without error
exp_manager(test_trainer, {"create_checkpoint_callback": False, "create_tensorboard_logger": False})
test_trainer_2 = pl.Trainer(accelerator='cpu', enable_checkpointing=False)
exp_manager(test_trainer_2, disable_tb_logger) # Should succeed without error
@pytest.mark.unit
def test_default_log_dir(self):
"""Check the default of ./nemo_experiments/default/datetime works as intended"""
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False)
log_dir = exp_manager(test_trainer, {"create_tensorboard_logger": False, "create_checkpoint_callback": False})
assert (log_dir / "..").resolve() == Path("./nemo_experiments/default/").resolve()
assert Path("./nemo_experiments").exists()
assert Path("./nemo_experiments/default/").exists()
sub_dirs = [x for x in Path("./nemo_experiments/default/").iterdir() if x.is_dir()]
assert len(sub_dirs) == 1
assert re.match(r"[0-9]{4}-[0-9]{2}-[0-9]{2}_[0-9]{2}-[0-9]{2}-[0-9]{2}", sub_dirs[0].name)
@pytest.mark.unit
def test_log_dir_overrides(self, monkeypatch, tmp_path):
"""Check a variety of trainer options with exp_manager"""
# Checks that explicit_log_dir ignores exp_dir, name, and version
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False)
log_dir = exp_manager(test_trainer, {"explicit_log_dir": str(tmp_path / "test_log_dir_overrides")})
assert log_dir.resolve() == (tmp_path / "test_log_dir_overrides").resolve()
assert Path(tmp_path).exists()
assert Path(tmp_path / "test_log_dir_overrides").exists()
# Checks that exp_manager uses exp_dir, default name, and explicit version
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False)
log_dir = exp_manager(test_trainer, {"exp_dir": str(tmp_path / "test_no_name"), "version": 957})
assert log_dir.resolve() == (tmp_path / "test_no_name" / "default" / "957").resolve()
assert Path(tmp_path).exists()
assert Path(tmp_path / "test_no_name" / "default" / "957").exists()
monkeypatch.delenv(NEMO_ENV_VARNAME_VERSION)
# Checks that use_datetime_version False toggle works
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False)
log_dir = exp_manager(test_trainer, {"exp_dir": str(tmp_path / "test_no_name"), "use_datetime_version": False})
assert log_dir.resolve() == (tmp_path / "test_no_name" / "default" / "version_0").resolve()
assert Path(tmp_path).exists()
assert Path(tmp_path / "test_no_name" / "default" / "version_0").exists()
monkeypatch.delenv(NEMO_ENV_VARNAME_VERSION)
# Checks that use_datetime_version False toggle works and version increments
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False)
log_dir = exp_manager(test_trainer, {"exp_dir": str(tmp_path / "test_no_name"), "use_datetime_version": False})
assert log_dir.resolve() == (tmp_path / "test_no_name" / "default" / "version_1").resolve()
assert Path(tmp_path).exists()
assert Path(tmp_path / "test_no_name" / "default" / "version_1").exists()
@pytest.mark.unit
def test_resume(self, tmp_path):
""" Tests the resume capabilities of exp_manager"""
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False)
# Error because explicit_log_dir does not exist
with pytest.raises(NotFoundError):
exp_manager(
test_trainer,
{
"exp_dir": str(tmp_path / "test_resume"),
"resume_if_exists": True,
"explicit_log_dir": "Does_not_exist",
},
)
# Error because checkpoints folder does not exist
with pytest.raises(NotFoundError):
exp_manager(test_trainer, {"resume_if_exists": True, "exp_dir": str(tmp_path / "test_resume")})
# No error because we tell exp_manager to ignore notfounderror
exp_manager(
test_trainer,
{
"resume_if_exists": True,
"exp_dir": str(tmp_path / "test_resume_2"),
"resume_ignore_no_checkpoint": True,
},
)
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False)
Path(tmp_path / "test_resume" / "default" / "version_0" / "checkpoints").mkdir(parents=True)
# Error because checkpoints do not exist in folder
with pytest.raises(NotFoundError):
exp_manager(
test_trainer,
{
"resume_if_exists": True,
"explicit_log_dir": str(tmp_path / "test_resume" / "default" / "version_0"),
},
)
Path(tmp_path / "test_resume" / "default" / "version_0" / "checkpoints" / "mymodel--end.ckpt").touch()
# Error because *end.ckpt is in folder indicating that training has already finished
with pytest.raises(ValueError):
exp_manager(
test_trainer,
{
"resume_if_exists": True,
"explicit_log_dir": str(tmp_path / "test_resume" / "default" / "version_0"),
},
)
Path(tmp_path / "test_resume" / "default" / "version_0" / "checkpoints" / "mymodel--end.ckpt").unlink()
Path(tmp_path / "test_resume" / "default" / "version_0" / "checkpoints" / "mymodel--last.ckpt").touch()
Path(tmp_path / "test_resume" / "default" / "version_0" / "checkpoints" / "mymodel2--last.ckpt").touch()
# Error because multiple *last.ckpt is in folder. If more than one, don't know which to restore
with pytest.raises(ValueError):
exp_manager(
test_trainer,
{
"resume_if_exists": True,
"explicit_log_dir": str(tmp_path / "test_resume" / "default" / "version_0"),
},
)
# Finally succeed
Path(tmp_path / "test_resume" / "default" / "version_0" / "checkpoints" / "mymodel2--last.ckpt").unlink()
log_dir = exp_manager(
test_trainer,
{"resume_if_exists": True, "explicit_log_dir": str(tmp_path / "test_resume" / "default" / "version_0")},
)
checkpoint = Path(tmp_path / "test_resume" / "default" / "version_0" / "checkpoints" / "mymodel--last.ckpt")
assert (
Path(test_trainer._checkpoint_connector.resume_from_checkpoint_fit_path).resolve() == checkpoint.resolve()
)
# Succeed again and make sure that run_0 exists and previous log files were moved
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False)
exp_manager(test_trainer, {"resume_if_exists": True, "explicit_log_dir": str(log_dir)})
checkpoint = Path(tmp_path / "test_resume" / "default" / "version_0" / "checkpoints" / "mymodel--last.ckpt")
assert (
Path(test_trainer._checkpoint_connector.resume_from_checkpoint_fit_path).resolve() == checkpoint.resolve()
)
prev_run_dir = Path(tmp_path / "test_resume" / "default" / "version_0" / "run_0")
assert prev_run_dir.exists()
prev_log = Path(tmp_path / "test_resume" / "default" / "version_0" / "run_0" / "lightning_logs.txt")
assert prev_log.exists()
# Error becasue `dirpath` specified and has no checkpoint
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False)
dirpath_checkpoint_dir = Path(tmp_path / "test_resume" / "dirpath_test" / "ckpts")
dirpath_checkpoint_dir.mkdir(parents=True)
with pytest.raises(NotFoundError):
exp_manager(
test_trainer,
{
"resume_if_exists": True,
"checkpoint_callback_params": {"dirpath": str(dirpath_checkpoint_dir)},
"explicit_log_dir": str(log_dir),
},
)
# Check that model loads from `dirpath` and not <log_dir>/checkpoints
dirpath_log_dir = Path(tmp_path / "test_resume" / "dirpath_test" / "logs")
dirpath_log_dir.mkdir(parents=True)
dirpath_checkpoint = Path(dirpath_checkpoint_dir / "mymodel--last.ckpt")
dirpath_checkpoint.touch()
exp_manager(
test_trainer,
{
"resume_if_exists": True,
"checkpoint_callback_params": {"dirpath": str(dirpath_checkpoint_dir)},
"explicit_log_dir": str(dirpath_log_dir),
},
)
assert (
Path(test_trainer._checkpoint_connector.resume_from_checkpoint_fit_path).resolve()
== dirpath_checkpoint.resolve()
)
@pytest.mark.unit
def test_nemo_checkpoint_save_best_model_1(self, tmp_path):
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False, max_epochs=4)
exp_manager(
test_trainer,
{"checkpoint_callback_params": {"save_best_model": True}, "explicit_log_dir": str(tmp_path / "test")},
)
model = ExampleModel()
test_trainer.fit(model)
assert Path(str(tmp_path / "test" / "checkpoints" / "default.nemo")).exists()
model = ExampleModel.restore_from(str(tmp_path / "test" / "checkpoints" / "default.nemo"))
assert float(model(torch.tensor([1.0, 1.0], device=model.device))) == 0.0
@pytest.mark.unit
def test_nemo_checkpoint_save_best_model_2(self, tmp_path):
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False, max_epochs=4)
exp_manager(
test_trainer, {"explicit_log_dir": str(tmp_path / "test")},
)
model = ExampleModel()
test_trainer.fit(model)
assert Path(str(tmp_path / "test" / "checkpoints" / "default.nemo")).exists()
model = ExampleModel.restore_from(str(tmp_path / "test" / "checkpoints" / "default.nemo"))
assert math.fabs(float(model(torch.tensor([1.0, 1.0], device=model.device))) - 0.03) < 1e-5
@pytest.mark.unit
def test_nemo_checkpoint_always_save_nemo(self, tmp_path):
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False, max_epochs=4)
exp_manager(
test_trainer,
{
"checkpoint_callback_params": {"save_best_model": True, "always_save_nemo": True},
"explicit_log_dir": str(tmp_path / "test"),
},
)
model = ExampleModel()
test_trainer.fit(model)
assert Path(str(tmp_path / "test" / "checkpoints" / "default.nemo")).exists()
model = ExampleModel.restore_from(str(tmp_path / "test" / "checkpoints" / "default.nemo"))
assert float(model(torch.tensor([1.0, 1.0], device=model.device))) == 0.0
@pytest.mark.unit
def test_nemo_checkpoint_make_checkpoint_dir(self, tmp_path):
test_trainer = pl.Trainer(
accelerator='cpu', enable_checkpointing=False, logger=False, max_epochs=4, check_val_every_n_epoch=5
)
exp_manager(
test_trainer,
{
"checkpoint_callback_params": {"save_best_model": True, "always_save_nemo": True},
"explicit_log_dir": str(tmp_path / "test"),
},
)
model = ExampleModel()
test_trainer.fit(model)
assert Path(str(tmp_path / "test" / "checkpoints" / "default.nemo")).exists()
@pytest.mark.unit
def test_nemo_checkpoint_restore_model(self, tmp_path):
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False, max_epochs=4)
exp_manager(
test_trainer,
{
"checkpoint_callback_params": {"save_top_k": 1, "save_last": True},
"explicit_log_dir": str(tmp_path / "test"),
},
)
model = ExampleModel()
test_trainer.fit(model)
checkpoint = list(Path(str(tmp_path / "test" / "checkpoints")).glob("*.ckpt"))
# Make sure that only the best and last checkpoint is saved
assert len(checkpoint) == 2
assert math.fabs(float(model(torch.tensor([1.0, 1.0], device=model.device))) - 0.03) < 1e-5
test_trainer = pl.Trainer(accelerator='cpu', enable_checkpointing=False, logger=False, max_epochs=5)
exp_manager(
test_trainer,
{
"checkpoint_callback_params": {"save_top_k": 1, "save_last": False},
"explicit_log_dir": str(tmp_path / "test"),
"resume_if_exists": True,
"resume_past_end": True,
},
)
model = DoNothingModel()
model.l1.weight = torch.nn.Parameter(torch.tensor((0.0, 0.0)).unsqueeze(0))
model.l1.bias = torch.nn.Parameter(torch.tensor(1.0))
assert math.fabs(float(model(torch.tensor([1.0, 1.0], device=model.device))) - 1.0) < 1e-5
test_trainer.fit(model)
assert math.fabs(float(model(torch.tensor([1.0, 1.0], device=model.device))) - 0.03) < 1e-5
@pytest.mark.unit
def test_last_checkpoint_saved(self, tmp_path):
max_steps = 64
tmp_path = tmp_path / "test_1"
class TestModel(ExampleModel):
def train_dataloader(self):
dataset = OnesDataset(64)
return torch.utils.data.DataLoader(dataset, batch_size=1)
trainer = pl.Trainer(
accelerator='cpu', enable_checkpointing=False, logger=False, max_steps=max_steps, val_check_interval=0.33
)
exp_manager(
trainer,
{
"explicit_log_dir": str(tmp_path),
"checkpoint_callback_params": {"filename": f"{{val_loss:.4f}}-{{epoch}}-{{step}}"},
},
)
model = TestModel()
trainer.fit(model)
checkpoint_dir = Path(str(tmp_path / "checkpoints"))
model_path = checkpoint_dir / "val_loss=0.0300-epoch=1-step=64-last.ckpt"
last_saved_checkpoint = torch.load(model_path)
assert max_steps == last_saved_checkpoint['global_step']
# restart training, ensure global step starts correctly
class AssertCallback(Callback):
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
assert trainer.global_step == max_steps
def on_train_batch_end(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs, batch: Any, batch_idx: int
) -> None:
# we should only be running for one more step.
assert trainer.global_step == max_steps + 1
trainer = pl.Trainer(
accelerator='cpu',
enable_checkpointing=False,
logger=False,
max_steps=65,
val_check_interval=0.33,
callbacks=AssertCallback(),
)
exp_manager(
trainer,
{
"explicit_log_dir": str(tmp_path),
"checkpoint_callback_params": {"filename": f"{{val_loss:.4f}}-{{epoch}}-{{step}}"},
},
)
model = TestModel()
trainer.fit(model, ckpt_path=model_path)
@pytest.mark.unit
def test_resume_checkpoint_skip_validation(self, tmp_path):
"""Test to ensure that when we resume from a checkpoint, we do not re-run validation unnecessarily."""
tmp_path = tmp_path / "test_2"
def run_training(resume_path=None):
class TestModel(ExampleModel):
def train_dataloader(self):
dataset = OnesDataset(10)
return torch.utils.data.DataLoader(dataset, batch_size=1)
class AssertCallback(Callback):
recorded_validations = 0
recorded_train_steps = 0
def on_validation_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self.recorded_validations += 1
def on_train_batch_end(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs, batch: Any, batch_idx: int
) -> None:
self.recorded_train_steps += 1
def on_train_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
if resume_path is not None:
# we should only run validation at the end of training.
assert self.recorded_validations == 1
# we continue from half way
assert self.recorded_train_steps == len(pl_module.train_dataloader()) // 2
else:
# we've run validation within the middle of training and at the end of training.
assert self.recorded_validations == 2
assert self.recorded_train_steps == len(pl_module.train_dataloader())
model = TestModel()
trainer = pl.Trainer(
accelerator='cpu',
enable_checkpointing=False,
logger=False,
callbacks=[AssertCallback()],
val_check_interval=0.5,
num_sanity_val_steps=0,
max_epochs=1,
)
exp_manager(
trainer,
{"explicit_log_dir": str(tmp_path), "checkpoint_callback_params": {"filename": f"{{epoch}}-{{step}}"}},
)
trainer.fit(model, ckpt_path=resume_path)
run_training()
resume_path = tmp_path / 'checkpoints/epoch=0-step=5.ckpt'
run_training(resume_path)
def test_warning_validation_skipping_when_custom_epoch_loop(self, tmp_path):
"""When using validation skipping on restart with a custom epoch loop, we warn the user that we skip
support to not interfere with their custom logic.
"""
tmp_path = tmp_path / "test_3"
class CustomLoop(TrainingEpochLoop):
...
trainer = pl.Trainer(
accelerator='cpu', enable_checkpointing=False, logger=False, max_epochs=1, val_check_interval=0.33
)
loop = CustomLoop()
loop.trainer = trainer
trainer.fit_loop.epoch_loop = loop
with pytest.warns(UserWarning, match="Detected custom epoch loop"):
exp_manager(trainer, {"explicit_log_dir": str(tmp_path)})
|