File size: 10,664 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is used to generate JSON manifests for mel-generator model training. The usage is below.
$ python scripts/dataset_processing/tts/thorsten_neutral/get_data.py \
--data-root ~/experiments/thorsten_neutral \
--manifests-root ~/experiments/thorsten_neutral \
--data-version "22_10" \
--min-duration 0.1 \
--normalize-text
"""
import argparse
import json
import random
import shutil
import subprocess
import urllib.request
from pathlib import Path
from joblib import Parallel, delayed
from nemo_text_processing.text_normalization.normalize import Normalizer
from tqdm import tqdm
from nemo.utils import logging
# Thorsten Müller published two neural voice datasets, 21.02 and 22.10.
THORSTEN_NEUTRAL = {
"21_02": {
"url": "https://zenodo.org/record/5525342/files/thorsten-neutral_v03.tgz?download=1",
"dir_name": "thorsten-de_v03",
"metadata": ["metadata.csv"],
},
"22_10": {
"url": "https://zenodo.org/record/7265581/files/ThorstenVoice-Dataset_2022.10.zip?download=1",
"dir_name": "ThorstenVoice-Dataset_2022.10",
"metadata": ["metadata_train.csv", "metadata_dev.csv", "metadata_test.csv"],
},
}
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Download Thorsten Müller's neutral voice dataset and create manifests with predefined split. "
"Thorsten Müller published two neural voice datasets, 21.02 and 22.10, where 22.10 provides better "
"audio quality. Please choose one of the two for your TTS models. Details about the dataset are "
"in https://github.com/thorstenMueller/Thorsten-Voice.",
)
parser.add_argument("--data-root", required=True, type=Path, help="where the resulting dataset will reside.")
parser.add_argument("--manifests-root", required=True, type=Path, help="where the manifests files will reside.")
parser.add_argument("--data-version", default="22_10", choices=["21_02", "22_10"], type=str)
parser.add_argument("--min-duration", default=0.1, type=float)
parser.add_argument("--max-duration", default=float('inf'), type=float)
parser.add_argument("--val-size", default=100, type=int)
parser.add_argument("--test-size", default=100, type=int)
parser.add_argument(
"--num-workers",
default=-1,
type=int,
help="Specify the max number of concurrent Python worker processes. "
"If -1 all CPUs are used. If 1 no parallel computing is used.",
)
parser.add_argument(
"--normalize-text",
default=False,
action='store_true',
help="Normalize original text and add a new entry 'normalized_text' to .json file if True.",
)
parser.add_argument(
"--seed-for-ds-split",
default=100,
type=float,
help="Seed for deterministic split of train/dev/test, NVIDIA's default is 100.",
)
args = parser.parse_args()
return args
def __maybe_download_file(source_url, destination_path):
if not destination_path.exists():
logging.info(f"Downloading data: {source_url} --> {destination_path}")
tmp_file_path = destination_path.with_suffix(".tmp")
urllib.request.urlretrieve(source_url, filename=tmp_file_path)
tmp_file_path.rename(destination_path)
else:
logging.info(f"Skipped downloading data because it exists: {destination_path}")
def __extract_file(filepath, data_dir):
logging.info(f"Unzipping data: {filepath} --> {data_dir}")
shutil.unpack_archive(filepath, data_dir)
logging.info(f"Unzipping data is complete: {filepath}.")
def __save_json(json_file, dict_list):
logging.info(f"Saving JSON split to {json_file}.")
with open(json_file, "w") as f:
for d in dict_list:
f.write(json.dumps(d) + "\n")
def __text_normalization(json_file, num_workers=-1):
text_normalizer_call_kwargs = {
"punct_pre_process": True,
"punct_post_process": True,
}
text_normalizer = Normalizer(
lang="de", input_case="cased", overwrite_cache=True, cache_dir=str(json_file.parent / "cache_dir"),
)
def normalizer_call(x):
return text_normalizer.normalize(x, **text_normalizer_call_kwargs)
def add_normalized_text(line_dict):
normalized_text = normalizer_call(line_dict["text"])
line_dict.update({"normalized_text": normalized_text})
return line_dict
logging.info(f"Normalizing text for {json_file}.")
with open(json_file, 'r', encoding='utf-8') as fjson:
lines = fjson.readlines()
# Note: you need to verify which backend works well on your cluster.
# backend="loky" is fine on multi-core Ubuntu OS; backend="threading" on Slurm.
dict_list = Parallel(n_jobs=num_workers)(
delayed(add_normalized_text)(json.loads(line)) for line in tqdm(lines)
)
json_file_text_normed = json_file.parent / f"{json_file.stem}_text_normed{json_file.suffix}"
with open(json_file_text_normed, 'w', encoding="utf-8") as fjson_norm:
for dct in dict_list:
fjson_norm.write(json.dumps(dct) + "\n")
logging.info(f"Normalizing text is complete: {json_file} --> {json_file_text_normed}")
def __process_data(
unzipped_dataset_path, metadata, min_duration, max_duration, val_size, test_size, seed_for_ds_split
):
logging.info("Preparing JSON train/val/test splits.")
entries = list()
not_found_wavs = list()
wrong_duration_wavs = list()
for metadata_fname in metadata:
meta_file = unzipped_dataset_path / metadata_fname
with open(meta_file, 'r') as fmeta:
for line in tqdm(fmeta):
items = line.strip().split('|')
wav_file_stem, text = items[0], items[1]
wav_file = unzipped_dataset_path / "wavs" / f"{wav_file_stem}.wav"
# skip audios if they do not exist.
if not wav_file.exists():
not_found_wavs.append(wav_file)
logging.warning(f"Skipping {wav_file}: it is not found.")
continue
# skip audios if their duration is out of range.
duration = subprocess.check_output(f"soxi -D {wav_file}", shell=True)
duration = float(duration)
if min_duration <= duration <= max_duration:
entry = {
'audio_filepath': str(wav_file),
'duration': duration,
'text': text,
}
entries.append(entry)
elif duration < min_duration:
wrong_duration_wavs.append(wav_file)
logging.warning(f"Skipping {wav_file}: it is too short, less than {min_duration} seconds.")
continue
else:
wrong_duration_wavs.append(wav_file)
logging.warning(f"Skipping {wav_file}: it is too long, greater than {max_duration} seconds.")
continue
random.Random(seed_for_ds_split).shuffle(entries)
train_size = len(entries) - val_size - test_size
if train_size <= 0:
raise ValueError("Not enough data for the train split.")
logging.info("Preparing JSON train/val/test splits is complete.")
train, val, test = (
entries[:train_size],
entries[train_size : train_size + val_size],
entries[train_size + val_size :],
)
return train, val, test, not_found_wavs, wrong_duration_wavs
def main():
args = get_args()
data_root = args.data_root
manifests_root = args.manifests_root
data_version = args.data_version
dataset_root = data_root / f"ThorstenVoice-Dataset-{data_version}"
dataset_root.mkdir(parents=True, exist_ok=True)
# download and extract dataset
dataset_url = THORSTEN_NEUTRAL[data_version]["url"]
zipped_dataset_path = dataset_root / Path(dataset_url).name.split("?")[0]
__maybe_download_file(dataset_url, zipped_dataset_path)
__extract_file(zipped_dataset_path, dataset_root)
# generate train/dev/test splits
unzipped_dataset_path = dataset_root / THORSTEN_NEUTRAL[data_version]["dir_name"]
entries_train, entries_val, entries_test, not_found_wavs, wrong_duration_wavs = __process_data(
unzipped_dataset_path=unzipped_dataset_path,
metadata=THORSTEN_NEUTRAL[data_version]["metadata"],
min_duration=args.min_duration,
max_duration=args.max_duration,
val_size=args.val_size,
test_size=args.test_size,
seed_for_ds_split=args.seed_for_ds_split,
)
# save json splits.
train_json = manifests_root / "train_manifest.json"
val_json = manifests_root / "val_manifest.json"
test_json = manifests_root / "test_manifest.json"
__save_json(train_json, entries_train)
__save_json(val_json, entries_val)
__save_json(test_json, entries_test)
# save skipped audios that are not found into a file.
if len(not_found_wavs) > 0:
skipped_not_found_file = manifests_root / "skipped_not_found_wavs.list"
with open(skipped_not_found_file, "w") as f_notfound:
for line in not_found_wavs:
f_notfound.write(f"{line}\n")
# save skipped audios that are too short or too long into a file.
if len(wrong_duration_wavs) > 0:
skipped_wrong_duration_file = manifests_root / "skipped_wrong_duration_wavs.list"
with open(skipped_wrong_duration_file, "w") as f_wrong_dur:
for line in wrong_duration_wavs:
f_wrong_dur.write(f"{line}\n")
# normalize text if requested. New json file, train_manifest_text_normed.json, will be generated.
if args.normalize_text:
__text_normalization(train_json, args.num_workers)
__text_normalization(val_json, args.num_workers)
__text_normalization(test_json, args.num_workers)
if __name__ == "__main__":
main()
|