File size: 11,573 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import shutil
from os.path import exists

from assistant_utils import process_assistant

from nemo.collections.nlp.data.data_utils.data_preprocessing import (
    DATABASE_EXISTS_TMP,
    MODE_EXISTS_TMP,
    create_dataset,
    get_dataset,
    get_vocab,
    if_exist,
)
from nemo.utils import logging


def ids2text(ids, vocab):
    """
    Map list of ids of words in utterance to utterance
    """
    return ' '.join([vocab[int(id_)] for id_ in ids])


def process_atis(infold, outfold, modes=['train', 'test'], do_lower_case=False):
    """ 
    Process ATIS dataset found at https://www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk
    Args:
        infold: location for input fold of data
        outfold: location for output fold of data
        modes: dataset splits to process
        do_lowercase: whether to lowercase the input utterances
    """
    vocab = get_vocab(f'{infold}/atis.dict.vocab.csv')

    if if_exist(outfold, [f'{mode}.tsv' for mode in modes]):
        logging.info(DATABASE_EXISTS_TMP.format('ATIS', outfold))
        return outfold
    logging.info(f'Processing ATIS dataset and storing at {outfold}.')

    os.makedirs(outfold, exist_ok=True)

    outfiles = {}
    for mode in modes:
        outfiles[mode] = open(os.path.join(outfold, mode + '.tsv'), 'w', encoding='utf-8')
        outfiles[mode].write('sentence\tlabel\n')
        outfiles[mode + '_slots'] = open(f'{outfold}/{mode}_slots.tsv', 'w', encoding='utf-8')

        queries = open(f'{infold}/atis.{mode}.query.csv', 'r', encoding='utf-8').readlines()
        intents = open(f'{infold}/atis.{mode}.intent.csv', 'r', encoding='utf-8').readlines()
        slots = open(f'{infold}/atis.{mode}.slots.csv', 'r', encoding='utf-8').readlines()

        for i, query in enumerate(queries):
            sentence = ids2text(query.strip().split()[1:-1], vocab)
            if do_lower_case:
                sentence = sentence.lower()
            outfiles[mode].write(f'{sentence}\t{intents[i].strip()}\n')
            slot = ' '.join(slots[i].strip().split()[1:-1])
            outfiles[mode + '_slots'].write(slot + '\n')

    shutil.copyfile(f'{infold}/atis.dict.intent.csv', f'{outfold}/dict.intents.csv')
    shutil.copyfile(f'{infold}/atis.dict.slots.csv', f'{outfold}/dict.slots.csv')
    for mode in modes:
        outfiles[mode].close()


def process_snips(infold, outfold, do_lower_case, modes=['train', 'test'], dev_split=0.1):
    """
    Process snips dataset
    Args:
        infold: location for input fold of data
        outfold: location for output fold of data
        do_lowercase: whether to lowercase the input utterances
        modes: dataset splits to process
        dev_split: proportion of train samples to put into dev set
    """
    if not os.path.exists(infold):
        link = 'https://github.com/snipsco/spoken-language-understanding-research-datasets'
        raise ValueError(f'Data not found at {infold}. ' f'You may request to download the SNIPS dataset from {link}.')

    exist = True
    for dataset in ['light', 'speak', 'all']:
        if if_exist(f'{outfold}/{dataset}', [f'{mode}.tsv' for mode in modes]):
            logging.info(DATABASE_EXISTS_TMP.format('SNIPS-' + dataset, outfold))
        else:
            exist = False
    if exist:
        return outfold

    logging.info(f'Processing SNIPS dataset and storing at folders "speak", "light" and "all" under {outfold}.')
    logging.info(
        f'Processing and importing "smart-speaker-en-close-field" -> "speak" and "smart-speaker-en-close-field" -> "light".'
    )

    os.makedirs(outfold, exist_ok=True)

    speak_dir = 'smart-speaker-en-close-field'
    light_dir = 'smart-lights-en-close-field'

    light_files = [f'{infold}/{light_dir}/dataset.json']
    speak_files = [f'{infold}/{speak_dir}/training_dataset.json']
    speak_files.append(f'{infold}/{speak_dir}/test_dataset.json')

    light_train, light_dev, light_slots, light_intents = get_dataset(light_files, dev_split)
    speak_train, speak_dev, speak_slots, speak_intents = get_dataset(speak_files)

    create_dataset(light_train, light_dev, light_slots, light_intents, do_lower_case, f'{outfold}/light')
    create_dataset(speak_train, speak_dev, speak_slots, speak_intents, do_lower_case, f'{outfold}/speak')
    create_dataset(
        light_train + speak_train,
        light_dev + speak_dev,
        light_slots | speak_slots,
        light_intents | speak_intents,
        do_lower_case,
        f'{outfold}/all',
    )


def process_jarvis_datasets(
    infold, outfold, modes=['train', 'test', 'dev'], do_lower_case=False, ignore_prev_intent=False
):
    """ 
    Process and convert Jarvis datasets into NeMo's BIO format
    Args:
        infold: location for input fold of data
        outfold: location for output fold of data
        modes: dataset splits to process
        do_lowercase: whether to lowercase the input utterances
        ignore_prev_intent: whether to include intent from previous turn in predicting intent of current turn
    """
    dataset_name = "jarvis"
    if if_exist(outfold, ['dict.intents.csv', 'dict.slots.csv']):
        logging.info(DATABASE_EXISTS_TMP.format(dataset_name, outfold))
        return outfold

    logging.info(f'Processing {dataset_name} dataset and storing at {outfold}')

    os.makedirs(outfold, exist_ok=True)

    outfiles = {}
    intents_list = {}
    slots_list = {}
    slots_list_all = {}

    outfiles['dict_intents'] = open(f'{outfold}/dict.intents.csv', 'w', encoding='utf-8')
    outfiles['dict_slots'] = open(f'{outfold}/dict.slots.csv', 'w', encoding='utf-8')

    outfiles['dict_slots'].write('O\n')
    slots_list["O"] = 0
    slots_list_all["O"] = 0

    for mode in modes:
        if if_exist(outfold, [f'{mode}.tsv']):
            logging.info(MODE_EXISTS_TMP.format(mode, dataset_name, outfold, mode))
            continue

        if not if_exist(infold, [f'{mode}.tsv']):
            logging.info(f'{mode} mode of {dataset_name}' f' is skipped as it was not found.')
            continue

        outfiles[mode] = open(os.path.join(outfold, mode + '.tsv'), 'w', encoding='utf-8')
        outfiles[mode].write('sentence\tlabel\n')
        outfiles[mode + '_slots'] = open(f'{outfold}/{mode}_slots.tsv', 'w', encoding='utf-8')

        queries = open(f'{infold}/{mode}.tsv', 'r', encoding='utf-8').readlines()

        for i, query in enumerate(queries):
            line_splits = query.strip().split("\t")
            if len(line_splits) == 3:
                intent_str, slot_tags_str, sentence = line_splits
            else:
                intent_str, sentence = line_splits
                slot_tags_str = ""

            if intent_str not in intents_list:
                intents_list[intent_str] = len(intents_list)
                outfiles['dict_intents'].write(f'{intent_str}\n')

            if ignore_prev_intent:
                start_token = 2
            else:
                start_token = 1

            if do_lower_case:
                sentence = sentence.lower()
            sentence_cld = " ".join(sentence.strip().split()[start_token:-1])
            outfiles[mode].write(f'{sentence_cld}\t' f'{str(intents_list[intent_str])}\n')

            slot_tags_list = []
            if slot_tags_str.strip():
                slot_tags = slot_tags_str.strip().split(",")
                for st in slot_tags:
                    if not st.strip():
                        continue
                    [start_i, end_i, slot_name] = st.strip().split(":")
                    slot_tags_list.append([int(start_i), int(end_i), slot_name])
                    if slot_name not in slots_list:
                        slots_list[slot_name] = len(slots_list)
                        slots_list_all[f'B-{slot_name}'] = len(slots_list_all)
                        slots_list_all[f'I-{slot_name}'] = len(slots_list_all)
                        outfiles['dict_slots'].write(f'B-{slot_name}\n')
                        outfiles['dict_slots'].write(f'I-{slot_name}\n')

            slot_tags_list.sort(key=lambda x: x[0])
            slots = []
            processed_index = 0
            for tag_start, tag_end, tag_str in slot_tags_list:
                if tag_start > processed_index:
                    words_list = sentence[processed_index:tag_start].strip().split()
                    slots.extend([str(slots_list_all['O'])] * len(words_list))
                words_list = sentence[tag_start:tag_end].strip().split()
                slots.append(str(slots_list_all[f'B-{tag_str}']))
                slots.extend([str(slots_list_all[f'I-{tag_str}'])] * (len(words_list) - 1))
                processed_index = tag_end

            if processed_index < len(sentence):
                words_list = sentence[processed_index:].strip().split()
                slots.extend([str(slots_list_all['O'])] * len(words_list))

            slots = slots[1:-1]
            slot = ' '.join(slots)
            outfiles[mode + '_slots'].write(slot + '\n')

        outfiles[mode + '_slots'].close()
        outfiles[mode].close()

    outfiles['dict_slots'].close()
    outfiles['dict_intents'].close()

    return outfold


if __name__ == "__main__":
    # Parse the command-line arguments.
    parser = argparse.ArgumentParser(description="Process and convert datasets into NeMo\'s format.")
    parser.add_argument(
        "--dataset_name", required=True, type=str, choices=['atis', 'snips', 'jarvis', 'assistant'],
    )
    parser.add_argument(
        "--source_data_dir", required=True, type=str, help='path to the folder containing the dataset files'
    )
    parser.add_argument("--target_data_dir", required=True, type=str, help='path to save the processed dataset')
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument(
        "--ignore_prev_intent",
        action='store_true',
        help='ignores previous intent while importing datasets in jarvis\'s format',
    )

    args = parser.parse_args()

    dataset_name = args.dataset_name
    source_dir = args.source_data_dir
    target_dir = args.target_data_dir

    if not exists(source_dir):
        raise FileNotFoundError(f"{source_dir} does not exist.")

    if dataset_name == 'atis':
        process_atis(infold=source_dir, outfold=target_dir, do_lower_case=args.do_lower_case)
    elif dataset_name == 'snips':
        process_snips(infold=source_dir, outfold=target_dir, do_lower_case=args.do_lower_case)
    elif dataset_name == 'jarvis':
        process_jarvis_datasets(
            infold=source_dir,
            outfold=target_dir,
            modes=["train", "test", "dev"],
            do_lower_case=args.do_lower_case,
            ignore_prev_intent=args.ignore_prev_intent,
        )
    elif dataset_name == 'assistant':
        process_assistant(infold=source_dir, outfold=target_dir)
    else:
        raise ValueError(f'Dataset {dataset_name} is not supported.')