File size: 11,573 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import shutil
from os.path import exists
from assistant_utils import process_assistant
from nemo.collections.nlp.data.data_utils.data_preprocessing import (
DATABASE_EXISTS_TMP,
MODE_EXISTS_TMP,
create_dataset,
get_dataset,
get_vocab,
if_exist,
)
from nemo.utils import logging
def ids2text(ids, vocab):
"""
Map list of ids of words in utterance to utterance
"""
return ' '.join([vocab[int(id_)] for id_ in ids])
def process_atis(infold, outfold, modes=['train', 'test'], do_lower_case=False):
"""
Process ATIS dataset found at https://www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk
Args:
infold: location for input fold of data
outfold: location for output fold of data
modes: dataset splits to process
do_lowercase: whether to lowercase the input utterances
"""
vocab = get_vocab(f'{infold}/atis.dict.vocab.csv')
if if_exist(outfold, [f'{mode}.tsv' for mode in modes]):
logging.info(DATABASE_EXISTS_TMP.format('ATIS', outfold))
return outfold
logging.info(f'Processing ATIS dataset and storing at {outfold}.')
os.makedirs(outfold, exist_ok=True)
outfiles = {}
for mode in modes:
outfiles[mode] = open(os.path.join(outfold, mode + '.tsv'), 'w', encoding='utf-8')
outfiles[mode].write('sentence\tlabel\n')
outfiles[mode + '_slots'] = open(f'{outfold}/{mode}_slots.tsv', 'w', encoding='utf-8')
queries = open(f'{infold}/atis.{mode}.query.csv', 'r', encoding='utf-8').readlines()
intents = open(f'{infold}/atis.{mode}.intent.csv', 'r', encoding='utf-8').readlines()
slots = open(f'{infold}/atis.{mode}.slots.csv', 'r', encoding='utf-8').readlines()
for i, query in enumerate(queries):
sentence = ids2text(query.strip().split()[1:-1], vocab)
if do_lower_case:
sentence = sentence.lower()
outfiles[mode].write(f'{sentence}\t{intents[i].strip()}\n')
slot = ' '.join(slots[i].strip().split()[1:-1])
outfiles[mode + '_slots'].write(slot + '\n')
shutil.copyfile(f'{infold}/atis.dict.intent.csv', f'{outfold}/dict.intents.csv')
shutil.copyfile(f'{infold}/atis.dict.slots.csv', f'{outfold}/dict.slots.csv')
for mode in modes:
outfiles[mode].close()
def process_snips(infold, outfold, do_lower_case, modes=['train', 'test'], dev_split=0.1):
"""
Process snips dataset
Args:
infold: location for input fold of data
outfold: location for output fold of data
do_lowercase: whether to lowercase the input utterances
modes: dataset splits to process
dev_split: proportion of train samples to put into dev set
"""
if not os.path.exists(infold):
link = 'https://github.com/snipsco/spoken-language-understanding-research-datasets'
raise ValueError(f'Data not found at {infold}. ' f'You may request to download the SNIPS dataset from {link}.')
exist = True
for dataset in ['light', 'speak', 'all']:
if if_exist(f'{outfold}/{dataset}', [f'{mode}.tsv' for mode in modes]):
logging.info(DATABASE_EXISTS_TMP.format('SNIPS-' + dataset, outfold))
else:
exist = False
if exist:
return outfold
logging.info(f'Processing SNIPS dataset and storing at folders "speak", "light" and "all" under {outfold}.')
logging.info(
f'Processing and importing "smart-speaker-en-close-field" -> "speak" and "smart-speaker-en-close-field" -> "light".'
)
os.makedirs(outfold, exist_ok=True)
speak_dir = 'smart-speaker-en-close-field'
light_dir = 'smart-lights-en-close-field'
light_files = [f'{infold}/{light_dir}/dataset.json']
speak_files = [f'{infold}/{speak_dir}/training_dataset.json']
speak_files.append(f'{infold}/{speak_dir}/test_dataset.json')
light_train, light_dev, light_slots, light_intents = get_dataset(light_files, dev_split)
speak_train, speak_dev, speak_slots, speak_intents = get_dataset(speak_files)
create_dataset(light_train, light_dev, light_slots, light_intents, do_lower_case, f'{outfold}/light')
create_dataset(speak_train, speak_dev, speak_slots, speak_intents, do_lower_case, f'{outfold}/speak')
create_dataset(
light_train + speak_train,
light_dev + speak_dev,
light_slots | speak_slots,
light_intents | speak_intents,
do_lower_case,
f'{outfold}/all',
)
def process_jarvis_datasets(
infold, outfold, modes=['train', 'test', 'dev'], do_lower_case=False, ignore_prev_intent=False
):
"""
Process and convert Jarvis datasets into NeMo's BIO format
Args:
infold: location for input fold of data
outfold: location for output fold of data
modes: dataset splits to process
do_lowercase: whether to lowercase the input utterances
ignore_prev_intent: whether to include intent from previous turn in predicting intent of current turn
"""
dataset_name = "jarvis"
if if_exist(outfold, ['dict.intents.csv', 'dict.slots.csv']):
logging.info(DATABASE_EXISTS_TMP.format(dataset_name, outfold))
return outfold
logging.info(f'Processing {dataset_name} dataset and storing at {outfold}')
os.makedirs(outfold, exist_ok=True)
outfiles = {}
intents_list = {}
slots_list = {}
slots_list_all = {}
outfiles['dict_intents'] = open(f'{outfold}/dict.intents.csv', 'w', encoding='utf-8')
outfiles['dict_slots'] = open(f'{outfold}/dict.slots.csv', 'w', encoding='utf-8')
outfiles['dict_slots'].write('O\n')
slots_list["O"] = 0
slots_list_all["O"] = 0
for mode in modes:
if if_exist(outfold, [f'{mode}.tsv']):
logging.info(MODE_EXISTS_TMP.format(mode, dataset_name, outfold, mode))
continue
if not if_exist(infold, [f'{mode}.tsv']):
logging.info(f'{mode} mode of {dataset_name}' f' is skipped as it was not found.')
continue
outfiles[mode] = open(os.path.join(outfold, mode + '.tsv'), 'w', encoding='utf-8')
outfiles[mode].write('sentence\tlabel\n')
outfiles[mode + '_slots'] = open(f'{outfold}/{mode}_slots.tsv', 'w', encoding='utf-8')
queries = open(f'{infold}/{mode}.tsv', 'r', encoding='utf-8').readlines()
for i, query in enumerate(queries):
line_splits = query.strip().split("\t")
if len(line_splits) == 3:
intent_str, slot_tags_str, sentence = line_splits
else:
intent_str, sentence = line_splits
slot_tags_str = ""
if intent_str not in intents_list:
intents_list[intent_str] = len(intents_list)
outfiles['dict_intents'].write(f'{intent_str}\n')
if ignore_prev_intent:
start_token = 2
else:
start_token = 1
if do_lower_case:
sentence = sentence.lower()
sentence_cld = " ".join(sentence.strip().split()[start_token:-1])
outfiles[mode].write(f'{sentence_cld}\t' f'{str(intents_list[intent_str])}\n')
slot_tags_list = []
if slot_tags_str.strip():
slot_tags = slot_tags_str.strip().split(",")
for st in slot_tags:
if not st.strip():
continue
[start_i, end_i, slot_name] = st.strip().split(":")
slot_tags_list.append([int(start_i), int(end_i), slot_name])
if slot_name not in slots_list:
slots_list[slot_name] = len(slots_list)
slots_list_all[f'B-{slot_name}'] = len(slots_list_all)
slots_list_all[f'I-{slot_name}'] = len(slots_list_all)
outfiles['dict_slots'].write(f'B-{slot_name}\n')
outfiles['dict_slots'].write(f'I-{slot_name}\n')
slot_tags_list.sort(key=lambda x: x[0])
slots = []
processed_index = 0
for tag_start, tag_end, tag_str in slot_tags_list:
if tag_start > processed_index:
words_list = sentence[processed_index:tag_start].strip().split()
slots.extend([str(slots_list_all['O'])] * len(words_list))
words_list = sentence[tag_start:tag_end].strip().split()
slots.append(str(slots_list_all[f'B-{tag_str}']))
slots.extend([str(slots_list_all[f'I-{tag_str}'])] * (len(words_list) - 1))
processed_index = tag_end
if processed_index < len(sentence):
words_list = sentence[processed_index:].strip().split()
slots.extend([str(slots_list_all['O'])] * len(words_list))
slots = slots[1:-1]
slot = ' '.join(slots)
outfiles[mode + '_slots'].write(slot + '\n')
outfiles[mode + '_slots'].close()
outfiles[mode].close()
outfiles['dict_slots'].close()
outfiles['dict_intents'].close()
return outfold
if __name__ == "__main__":
# Parse the command-line arguments.
parser = argparse.ArgumentParser(description="Process and convert datasets into NeMo\'s format.")
parser.add_argument(
"--dataset_name", required=True, type=str, choices=['atis', 'snips', 'jarvis', 'assistant'],
)
parser.add_argument(
"--source_data_dir", required=True, type=str, help='path to the folder containing the dataset files'
)
parser.add_argument("--target_data_dir", required=True, type=str, help='path to save the processed dataset')
parser.add_argument("--do_lower_case", action='store_true')
parser.add_argument(
"--ignore_prev_intent",
action='store_true',
help='ignores previous intent while importing datasets in jarvis\'s format',
)
args = parser.parse_args()
dataset_name = args.dataset_name
source_dir = args.source_data_dir
target_dir = args.target_data_dir
if not exists(source_dir):
raise FileNotFoundError(f"{source_dir} does not exist.")
if dataset_name == 'atis':
process_atis(infold=source_dir, outfold=target_dir, do_lower_case=args.do_lower_case)
elif dataset_name == 'snips':
process_snips(infold=source_dir, outfold=target_dir, do_lower_case=args.do_lower_case)
elif dataset_name == 'jarvis':
process_jarvis_datasets(
infold=source_dir,
outfold=target_dir,
modes=["train", "test", "dev"],
do_lower_case=args.do_lower_case,
ignore_prev_intent=args.ignore_prev_intent,
)
elif dataset_name == 'assistant':
process_assistant(infold=source_dir, outfold=target_dir)
else:
raise ValueError(f'Dataset {dataset_name} is not supported.')
|