File size: 5,205 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import itertools
import os
import random
import shutil

import pandas as pd


def augment_nemo_data(source_dir: str, target_dir: str, link_string: str, num_mixed: int) -> None:
    """
    Augments Training data to include more multi-label utterances by through utterance combining. 

    Args:
        source_dir: directory that contains nemo-format files
        target_dir: directory to store the newly transformed files
        num_mixed: the number of additional combined examples per class combination
        link_string: the string concatenated in between two utterances

    Raises:
        ValueError: dict.slots.csv must contain 'O' as one of the labels
    """
    os.makedirs(target_dir, exist_ok=True)
    train_df = pd.read_csv(f'{source_dir}/train.tsv', sep="\t")

    # Filler Slots
    slots_df = pd.read_csv(f'{source_dir}/train_slots.tsv', sep="\t", header=None)
    slots_df.columns = ["slots"]

    # Get Slots Dictionary
    slot_file = f'{source_dir}/dict.slots.csv'

    with open(slot_file, "r") as f:
        slot_lines = f.read().splitlines()

    dataset = list(slot_lines)

    if "O" not in dataset:
        raise ValueError("dict.slots.csv must contain 'O' as one of the labels")

    # Find the index that contains the 'O' slot
    o_slot_index = dataset.index('O')
    labels = train_df.columns[1:]
    actual_labels = train_df[labels].values.tolist()
    sentences = train_df['sentence'].values.tolist()

    # Set of all existing lables
    all_labels = set(map(lambda labels: tuple(labels), actual_labels))

    label_indices = []

    for label in all_labels:
        label_indices.append([i for i, x in enumerate(actual_labels) if tuple(x) == label])

    series_list = []
    slots_list = []

    for i in range(len(label_indices)):
        for j in range(i + 1, len(label_indices)):
            first_class_indices = label_indices[i]
            second_class_indices = label_indices[j]
            combined_list = list(itertools.product(first_class_indices, second_class_indices))
            combined_list = random.sample(combined_list, min(num_mixed, len(combined_list)))

            for index, index2 in combined_list:
                sentence1 = sentences[index]
                sentence2 = sentences[index2]

                labels1 = set(actual_labels[index][0].split(','))
                labels2 = set(actual_labels[index2][0].split(','))

                slots1 = slots_df["slots"][index]
                slots2 = slots_df["slots"][index2]

                combined_labels = ",".join(sorted(labels1.union(labels2)))
                combined_sentences = f"{sentence1}{link_string} {sentence2}"
                combined_lst = [combined_sentences] + [combined_labels]
                combined_slots = f"{slots1} {o_slot_index}  {slots2}"

                series_list.append(combined_lst)
                slots_list.append(combined_slots)

    new_df = pd.DataFrame(series_list, columns=train_df.columns)
    new_slots_df = pd.DataFrame(slots_list, columns=slots_df.columns)

    train_df = train_df.append(new_df)
    slots_df = slots_df.append(new_slots_df)
    train_df = train_df.reset_index(drop=True)
    slots_df = slots_df.reset_index(drop=True)
    train_df.to_csv(f'{target_dir}/train.tsv', sep="\t", index=False)
    slots_df.to_csv(f'{target_dir}/train_slots.tsv', sep="\t", index=False, header=False)


if __name__ == "__main__":
    # Parse the command-line arguments.
    parser = argparse.ArgumentParser(description="Process and convert datasets into NeMo\'s format.")
    parser.add_argument(
        "--source_data_dir", required=True, type=str, help='path to the folder containing the dataset files'
    )
    parser.add_argument("--target_data_dir", required=True, type=str, help='path to save the processed dataset')
    parser.add_argument("--num_mixed", type=int, default=100, help='Number of training examples per class to mix')
    parser.add_argument("--link_string", type=str, default="", help='string used to concatenate')

    args = parser.parse_args()

    source_dir = args.source_data_dir
    target_dir = args.target_data_dir
    num_mixed = args.num_mixed
    link_string = args.link_string

    augment_nemo_data(f'{source_dir}', f'{target_dir}', link_string, num_mixed)
    shutil.copyfile(f'{source_dir}/dict.intents.csv', f'{target_dir}/dict.intents.csv')
    shutil.copyfile(f'{source_dir}/dict.slots.csv', f'{target_dir}/dict.slots.csv')
    shutil.copyfile(f'{source_dir}/dev.tsv', f'{target_dir}/dev.tsv')
    shutil.copyfile(f'{source_dir}/dev_slots.tsv', f'{target_dir}/dev_slots.tsv')