File size: 5,205 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import itertools
import os
import random
import shutil
import pandas as pd
def augment_nemo_data(source_dir: str, target_dir: str, link_string: str, num_mixed: int) -> None:
"""
Augments Training data to include more multi-label utterances by through utterance combining.
Args:
source_dir: directory that contains nemo-format files
target_dir: directory to store the newly transformed files
num_mixed: the number of additional combined examples per class combination
link_string: the string concatenated in between two utterances
Raises:
ValueError: dict.slots.csv must contain 'O' as one of the labels
"""
os.makedirs(target_dir, exist_ok=True)
train_df = pd.read_csv(f'{source_dir}/train.tsv', sep="\t")
# Filler Slots
slots_df = pd.read_csv(f'{source_dir}/train_slots.tsv', sep="\t", header=None)
slots_df.columns = ["slots"]
# Get Slots Dictionary
slot_file = f'{source_dir}/dict.slots.csv'
with open(slot_file, "r") as f:
slot_lines = f.read().splitlines()
dataset = list(slot_lines)
if "O" not in dataset:
raise ValueError("dict.slots.csv must contain 'O' as one of the labels")
# Find the index that contains the 'O' slot
o_slot_index = dataset.index('O')
labels = train_df.columns[1:]
actual_labels = train_df[labels].values.tolist()
sentences = train_df['sentence'].values.tolist()
# Set of all existing lables
all_labels = set(map(lambda labels: tuple(labels), actual_labels))
label_indices = []
for label in all_labels:
label_indices.append([i for i, x in enumerate(actual_labels) if tuple(x) == label])
series_list = []
slots_list = []
for i in range(len(label_indices)):
for j in range(i + 1, len(label_indices)):
first_class_indices = label_indices[i]
second_class_indices = label_indices[j]
combined_list = list(itertools.product(first_class_indices, second_class_indices))
combined_list = random.sample(combined_list, min(num_mixed, len(combined_list)))
for index, index2 in combined_list:
sentence1 = sentences[index]
sentence2 = sentences[index2]
labels1 = set(actual_labels[index][0].split(','))
labels2 = set(actual_labels[index2][0].split(','))
slots1 = slots_df["slots"][index]
slots2 = slots_df["slots"][index2]
combined_labels = ",".join(sorted(labels1.union(labels2)))
combined_sentences = f"{sentence1}{link_string} {sentence2}"
combined_lst = [combined_sentences] + [combined_labels]
combined_slots = f"{slots1} {o_slot_index} {slots2}"
series_list.append(combined_lst)
slots_list.append(combined_slots)
new_df = pd.DataFrame(series_list, columns=train_df.columns)
new_slots_df = pd.DataFrame(slots_list, columns=slots_df.columns)
train_df = train_df.append(new_df)
slots_df = slots_df.append(new_slots_df)
train_df = train_df.reset_index(drop=True)
slots_df = slots_df.reset_index(drop=True)
train_df.to_csv(f'{target_dir}/train.tsv', sep="\t", index=False)
slots_df.to_csv(f'{target_dir}/train_slots.tsv', sep="\t", index=False, header=False)
if __name__ == "__main__":
# Parse the command-line arguments.
parser = argparse.ArgumentParser(description="Process and convert datasets into NeMo\'s format.")
parser.add_argument(
"--source_data_dir", required=True, type=str, help='path to the folder containing the dataset files'
)
parser.add_argument("--target_data_dir", required=True, type=str, help='path to save the processed dataset')
parser.add_argument("--num_mixed", type=int, default=100, help='Number of training examples per class to mix')
parser.add_argument("--link_string", type=str, default="", help='string used to concatenate')
args = parser.parse_args()
source_dir = args.source_data_dir
target_dir = args.target_data_dir
num_mixed = args.num_mixed
link_string = args.link_string
augment_nemo_data(f'{source_dir}', f'{target_dir}', link_string, num_mixed)
shutil.copyfile(f'{source_dir}/dict.intents.csv', f'{target_dir}/dict.intents.csv')
shutil.copyfile(f'{source_dir}/dict.slots.csv', f'{target_dir}/dict.slots.csv')
shutil.copyfile(f'{source_dir}/dev.tsv', f'{target_dir}/dev.tsv')
shutil.copyfile(f'{source_dir}/dev_slots.tsv', f'{target_dir}/dev_slots.tsv')
|