File size: 11,332 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This script would evaluate an N-gram language model trained with KenLM library (https://github.com/kpu/kenlm) in
# fusion with beam search decoders on top of a trained ASR model. NeMo's beam search decoders are capable of using the
# KenLM's N-gram models to find the best candidates. This script supports both character level and BPE level
# encodings and models which is detected automatically from the type of the model.
# You may train the LM model with 'scripts/ngram_lm/train_kenlm.py'.
#
# USAGE: python eval_beamsearch_ngram.py --nemo_model_file=<path to the .nemo file of the model> \
# --input_manifest=<path to the evaluation JSON manifest file \
# --kenlm_model_file=<path to the binary KenLM model> \
# --beam_width=<list of the beam widths> \
# --beam_alpha=<list of the beam alphas> \
# --preds_output_folder=<optional folder to store the predictions> \
# --decoding_mode=maes
# ...
#
# You may find more info on how to use this script at:
# https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/asr_language_modeling.html
import argparse
import contextlib
import json
import os
import pickle
import editdistance
import torch
from omegaconf import OmegaConf
from tqdm.auto import tqdm
import nemo.collections.asr as nemo_asr
from nemo.collections.asr.metrics.rnnt_wer_bpe import RNNTBPEDecodingConfig
from nemo.utils import logging
def beam_search_eval(all_hypotheses, target_transcripts, preds_output_file=None):
wer_dist_first = cer_dist_first = 0
wer_dist_best = cer_dist_best = 0
words_count = 0
chars_count = 0
if preds_output_file:
out_file = open(preds_output_file, 'w')
it = tqdm(range(len(all_hypotheses)), desc=f"Beam search decoding...", ncols=120,)
for sample_idx in it:
hypotheses = all_hypotheses[sample_idx]
target = target_transcripts[sample_idx]
target_split_w = target.split()
target_split_c = list(target)
words_count += len(target_split_w)
chars_count += len(target_split_c)
wer_dist_min = cer_dist_min = 10000
if not isinstance(hypotheses, list):
hypotheses = [hypotheses]
for candidate_idx, candidate in enumerate(hypotheses):
pred_text = candidate.text
pred_split_w = pred_text.split()
wer_dist = editdistance.eval(target_split_w, pred_split_w)
pred_split_c = list(pred_text)
cer_dist = editdistance.eval(target_split_c, pred_split_c)
wer_dist_min = min(wer_dist_min, wer_dist)
cer_dist_min = min(cer_dist_min, cer_dist)
if candidate_idx == 0:
# first candidate
wer_dist_first += wer_dist
cer_dist_first += cer_dist
if preds_output_file:
out_file.write('{}\t{}\n'.format(pred_text, candidate.score))
wer_dist_best += wer_dist_min
cer_dist_best += cer_dist_min
if preds_output_file:
out_file.close()
logging.info(f"Stored the predictions of beam search decoding at '{preds_output_file}'.")
logging.info(
'WER/CER with the provided decoding strategy = {:.2%}/{:.2%}'.format(
wer_dist_first / words_count, cer_dist_first / chars_count
)
)
logging.info(
'Oracle WER/CER in candidates = {:.2%}/{:.2%}'.format(wer_dist_best / words_count, cer_dist_best / chars_count)
)
logging.info(f"=================================================================================")
def main():
parser = argparse.ArgumentParser(
description='Evaluate an ASR model with beam search decoding and n-gram KenLM language model.'
)
parser.add_argument(
"--nemo_model_file", required=True, type=str, help="The path of the '.nemo' file of the ASR model"
)
parser.add_argument(
"--kenlm_model_file", required=False, default=None, type=str, help="The path of the KenLM binary model file"
)
parser.add_argument("--input_manifest", required=True, type=str, help="The manifest file of the evaluation set")
parser.add_argument(
"--preds_output_folder", default=None, type=str, help="The optional folder where the predictions are stored"
)
parser.add_argument(
"--probs_cache_file", default=None, type=str, help="The cache file for storing the outputs of the model"
)
parser.add_argument(
"--acoustic_batch_size", default=16, type=int, help="The batch size to calculate log probabilities"
)
parser.add_argument(
"--device", default="cuda", type=str, help="The device to load the model onto to calculate log probabilities"
)
parser.add_argument(
"--use_amp", action="store_true", help="Whether to use AMP if available to calculate log probabilities"
)
parser.add_argument(
"--decoding_mode",
choices=["greedy", "greedy_batch", "beam", "tsd", "alsd", "maes"],
default="beam",
type=str,
help="The decoding scheme to be used for evaluation.",
)
parser.add_argument(
"--beam_width", required=True, type=int, help="The width for the beam search decoding",
)
parser.add_argument(
"--beam_alpha", required=True, type=float, help="The alpha parameter for the beam search decoding",
)
parser.add_argument(
"--beam_batch_size", default=128, type=int, help="The batch size to be used for beam search decoding"
)
parser.add_argument(
"--maes_prefix_alpha",
default=1,
type=int,
help="Float pruning threshold used in the prune-by-value step when computing the expansions.",
)
parser.add_argument(
"--maes_expansion_gamma", default=2.3, type=float, help="Maximum prefix length in prefix search"
)
args = parser.parse_args()
if args.kenlm_model_file and args.decoding_mode != "maes":
raise ValueError("External n-gram LM fusion is available only for 'maes' decoding mode.")
if args.nemo_model_file.endswith('.nemo'):
asr_model = nemo_asr.models.ASRModel.restore_from(args.nemo_model_file, map_location=torch.device(args.device))
else:
logging.warning(
"nemo_model_file does not end with .nemo, therefore trying to load a pretrained model with this name."
)
asr_model = nemo_asr.models.ASRModel.from_pretrained(
args.nemo_model_file, map_location=torch.device(args.device)
)
target_transcripts = []
with open(args.input_manifest, 'r') as manifest_file:
audio_file_paths = []
durations = []
for line in tqdm(manifest_file, desc=f"Reading Manifest {args.input_manifest} ...", ncols=120):
data = json.loads(line)
target_transcripts.append(data['text'])
audio_file_paths.append(data['audio_filepath'])
durations.append(data['duration'])
if args.probs_cache_file and os.path.exists(args.probs_cache_file):
logging.info(f"Found a pickle file of probabilities at '{args.probs_cache_file}'.")
logging.info(f"Loading the cached pickle file of probabilities from '{args.probs_cache_file}' ...")
with open(args.probs_cache_file, 'rb') as probs_file:
all_probs = pickle.load(probs_file)
if len(all_probs) != len(audio_file_paths):
raise ValueError(
f"The number of samples in the probabilities file '{args.probs_cache_file}' does not "
f"match the manifest file. You may need to delete the probabilities cached file."
)
else:
asr_model = asr_model.eval()
rnnt_cfg = RNNTBPEDecodingConfig()
rnnt_cfg.strategy = args.decoding_mode # beam greedy
rnnt_cfg.beam.beam_size = args.beam_width
rnnt_cfg.beam.ngram_lm_model = args.kenlm_model_file
rnnt_cfg.beam.ngram_lm_alpha = args.beam_alpha # 0.2, 0.3
rnnt_cfg.compute_hypothesis_token_set = False
rnnt_cfg.beam.return_best_hypothesis = False
rnnt_cfg.beam.maes_prefix_alpha = args.maes_prefix_alpha
rnnt_cfg.beam.maes_expansion_gamma = args.maes_expansion_gamma
asr_model.change_decoding_strategy(OmegaConf.structured(rnnt_cfg))
@contextlib.contextmanager
def default_autocast():
yield
if args.use_amp:
if torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
logging.info("AMP is enabled!\n")
autocast = torch.cuda.amp.autocast
else:
autocast = default_autocast
else:
autocast = default_autocast
params = {'beam_width': args.beam_width, 'beam_alpha': args.beam_alpha}
logging.info(f"==============================Starting the beam search decoding===============================")
logging.info(f"Beam search params: {params}")
logging.info(f"It may take some time...")
logging.info(f"==============================================================================================")
with autocast():
with torch.no_grad():
hypotheses, all_hypotheses = asr_model.transcribe(
audio_file_paths, batch_size=args.acoustic_batch_size, return_hypotheses=True
)
# delete the model to free the memory
del asr_model
if args.preds_output_folder and not os.path.exists(args.preds_output_folder):
os.mkdir(args.preds_output_folder)
if args.preds_output_folder:
preds_output_file = os.path.join(
args.preds_output_folder, f"preds_out_width{args.beam_width}_alpha{args.beam_alpha}.tsv",
)
preds_output_manifest = os.path.join(args.preds_output_folder, f"preds_manifest.json",)
with open(preds_output_manifest, 'w') as fn:
for i, file_name in enumerate(audio_file_paths):
item = {
'audio_filepath': file_name,
'duration': durations[i],
'text': target_transcripts[i],
'pred_text': hypotheses[i].text,
}
fn.write(json.dumps(item) + "\n")
else:
preds_output_file = None
beam_search_eval(
all_hypotheses=all_hypotheses, target_transcripts=target_transcripts, preds_output_file=preds_output_file,
)
if __name__ == '__main__':
main()
|