File size: 21,179 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
from dataclasses import dataclass, is_dataclass
from enum import Enum
from functools import lru_cache
from pathlib import Path
from typing import List, Optional, Tuple, Union
import wrapt
from nemo.utils import AppState, logging
from nemo.utils.data_utils import resolve_cache_dir # imported for compatibility: model_utils.resolve_cache_dir()
from nemo.utils.data_utils import is_datastore_path
# TODO @blisc: Perhaps refactor instead of import guarding
_HAS_HYDRA = True
try:
from omegaconf import DictConfig, ListConfig, OmegaConf
from omegaconf import errors as omegaconf_errors
from packaging import version
except ModuleNotFoundError:
_HAS_HYDRA = False
_VAL_TEST_FASTPATH_KEY = 'ds_item'
class ArtifactPathType(Enum):
"""
ArtifactPathType refers to the type of the path that the artifact is located at.
LOCAL_PATH: A user local filepath that exists on the file system.
TAR_PATH: A (generally flattened) filepath that exists inside of an archive (that may have its own full path).
"""
LOCAL_PATH = 0
TAR_PATH = 1
@dataclass(init=False)
class ArtifactItem:
path: str
path_type: ArtifactPathType
hashed_path: Optional[str] = None
def resolve_dataset_name_from_cfg(cfg: 'DictConfig') -> Optional[str]:
"""
Parses items of the provided sub-config to find the first potential key that
resolves to an existing file or directory.
# Fast-path Resolution
In order to handle cases where we need to resolve items that are not paths, a fastpath
key can be provided as defined in the global `_VAL_TEST_FASTPATH_KEY`.
This key can be used in two ways :
## _VAL_TEST_FASTPATH_KEY points to another key in the config
If this _VAL_TEST_FASTPATH_KEY points to another key in this config itself,
then we assume we want to loop through the values of that key.
This allows for any key in the config to become a fastpath key.
Example:
validation_ds:
splits: "val"
...
<_VAL_TEST_FASTPATH_KEY>: "splits" <-- this points to the key name "splits"
Then we can write the following when overriding in hydra:
```python
python train_file.py ... \
model.validation_ds.splits=[val1, val2, dev1, dev2] ...
```
## _VAL_TEST_FASTPATH_KEY itself acts as the resolved key
If this _VAL_TEST_FASTPATH_KEY does not point to another key in the config, then
it is assumed that the items of this key itself are used for resolution.
Example:
validation_ds:
...
<_VAL_TEST_FASTPATH_KEY>: "val" <-- this points to the key name "splits"
Then we can write the following when overriding in hydra:
```python
python train_file.py ... \
model.validation_ds.<_VAL_TEST_FASTPATH_KEY>=[val1, val2, dev1, dev2] ...
```
# IMPORTANT NOTE:
It <can> potentially mismatch if there exist more than 2 valid paths, and the
first path does *not* resolve the the path of the data file (but does resolve to
some other valid path).
To avoid this side-effect, place the data path as the first item on the config file.
Args:
cfg: DictConfig (Sub-config) that should be parsed.
Returns:
A str representing the `key` of the config which hosts the filepath(s),
or None in case path could not be resolved.
"""
if _VAL_TEST_FASTPATH_KEY in cfg and cfg[_VAL_TEST_FASTPATH_KEY] is not None:
fastpath_key = cfg[_VAL_TEST_FASTPATH_KEY]
if isinstance(fastpath_key, str) and fastpath_key in cfg:
return cfg[fastpath_key]
else:
return _VAL_TEST_FASTPATH_KEY
for key, value in cfg.items():
if type(value) in [list, tuple, ListConfig]:
# Count the number of valid paths in the list
values_are_paths = 0
for val_i in value:
val_i = str(val_i)
if os.path.exists(val_i) or os.path.isdir(val_i) or is_datastore_path(val_i):
values_are_paths += 1
else:
# reset counter and break inner loop
break
if values_are_paths == len(value):
return key
else:
if os.path.exists(str(value)) or os.path.isdir(str(value)) or is_datastore_path(str(value)):
return key
return None
def parse_dataset_as_name(name: str) -> str:
"""
Constructs a valid prefix-name from a provided file path.
Args:
name: str path to some valid data/manifest file or a python object that
will be used as a name for the data loader (via str() cast).
Returns:
str prefix used to identify uniquely this data/manifest file.
"""
if os.path.exists(str(name)) or os.path.isdir(str(name)) or is_datastore_path(str(name)):
name = Path(name).stem
else:
name = str(name)
# cleanup name
name = name.replace('-', '_')
if 'manifest' in name:
name = name.replace('manifest', '')
if 'dataset' in name:
name = name.replace('dataset', '')
# Test if the manifes/dataset name was simply `manifest.yaml` or `dataset.yaml`: Invalid names.
if name == '':
raise ValueError(
"Provided dataset / manifest filename was `manifest.json` or `dataset.json`.\n"
"Such a name is invalid, since multiple datasets/manifests can share the same name,\n"
"thereby overriding their results during logging. Please pick a more discriptive filename \n"
"for the provided dataset / manifest file."
)
if '_' != name[-1]:
name = name + '_'
return name
def unique_names_check(name_list: Optional[List[str]]):
"""
Performs a uniqueness check on the name list resolved, so that it can warn users
about non-unique keys.
Args:
name_list: List of strings resolved for data loaders.
"""
if name_list is None:
return
# Name uniqueness checks
names = set()
for name in name_list:
if name in names:
logging.warning(
"Name resolution has found more than one data loader having the same name !\n"
"In such cases, logs will nor be properly generated. "
"Please rename the item to have unique names.\n"
f"Resolved name : {name}"
)
else:
names.add(name) # we need just hash key check, value is just a placeholder
def resolve_validation_dataloaders(model: 'ModelPT'):
"""
Helper method that operates on the ModelPT class to automatically support
multiple dataloaders for the validation set.
It does so by first resolving the path to one/more data files via `resolve_dataset_name_from_cfg()`.
If this resolution fails, it assumes the data loader is prepared to manually support / not support
multiple data loaders and simply calls the appropriate setup method.
If resolution succeeds:
Checks if provided path is to a single file or a list of files.
If a single file is provided, simply tags that file as such and loads it via the setup method.
If multiple files are provided:
Inject a new manifest path at index "i" into the resolved key.
Calls the appropriate setup method to set the data loader.
Collects the initialized data loader in a list and preserves it.
Once all data loaders are processed, assigns the list of loaded loaders to the ModelPT.
Finally assigns a list of unique names resolved from the file paths to the ModelPT.
Args:
model: ModelPT subclass, which requires >=1 Validation Dataloaders to be setup.
"""
if not _HAS_HYDRA:
logging.error("This function requires Hydra/Omegaconf and it was not installed.")
exit(1)
cfg = copy.deepcopy(model._cfg)
dataloaders = []
# process val_loss_idx
if 'val_dl_idx' in cfg.validation_ds:
cfg = OmegaConf.to_container(cfg)
val_dl_idx = cfg['validation_ds'].pop('val_dl_idx')
cfg = OmegaConf.create(cfg)
else:
val_dl_idx = 0
# Set val_loss_idx
model._val_dl_idx = val_dl_idx
ds_key = resolve_dataset_name_from_cfg(cfg.validation_ds)
if ds_key is None:
logging.debug(
"Could not resolve file path from provided config - {}. "
"Disabling support for multi-dataloaders.".format(cfg.validation_ds)
)
model.setup_validation_data(cfg.validation_ds)
return
ds_values = cfg.validation_ds[ds_key]
if isinstance(ds_values, (list, tuple, ListConfig)):
for ds_value in ds_values:
cfg.validation_ds[ds_key] = ds_value
model.setup_validation_data(cfg.validation_ds)
dataloaders.append(model._validation_dl)
model._validation_dl = dataloaders
model._validation_names = [parse_dataset_as_name(ds) for ds in ds_values]
unique_names_check(name_list=model._validation_names)
return
else:
model.setup_validation_data(cfg.validation_ds)
model._validation_names = [parse_dataset_as_name(ds_values)]
unique_names_check(name_list=model._validation_names)
def resolve_test_dataloaders(model: 'ModelPT'):
"""
Helper method that operates on the ModelPT class to automatically support
multiple dataloaders for the test set.
It does so by first resolving the path to one/more data files via `resolve_dataset_name_from_cfg()`.
If this resolution fails, it assumes the data loader is prepared to manually support / not support
multiple data loaders and simply calls the appropriate setup method.
If resolution succeeds:
Checks if provided path is to a single file or a list of files.
If a single file is provided, simply tags that file as such and loads it via the setup method.
If multiple files are provided:
Inject a new manifest path at index "i" into the resolved key.
Calls the appropriate setup method to set the data loader.
Collects the initialized data loader in a list and preserves it.
Once all data loaders are processed, assigns the list of loaded loaders to the ModelPT.
Finally assigns a list of unique names resolved from the file paths to the ModelPT.
Args:
model: ModelPT subclass, which requires >=1 Test Dataloaders to be setup.
"""
if not _HAS_HYDRA:
logging.error("This function requires Hydra/Omegaconf and it was not installed.")
exit(1)
cfg = copy.deepcopy(model._cfg)
dataloaders = []
# process test_loss_idx
if 'test_dl_idx' in cfg.test_ds:
cfg = OmegaConf.to_container(cfg)
test_dl_idx = cfg['test_ds'].pop('test_dl_idx')
cfg = OmegaConf.create(cfg)
else:
test_dl_idx = 0
# Set val_loss_idx
model._test_dl_idx = test_dl_idx
ds_key = resolve_dataset_name_from_cfg(cfg.test_ds)
if ds_key is None:
logging.debug(
"Could not resolve file path from provided config - {}. "
"Disabling support for multi-dataloaders.".format(cfg.test_ds)
)
model.setup_test_data(cfg.test_ds)
return
ds_values = cfg.test_ds[ds_key]
if isinstance(ds_values, (list, tuple, ListConfig)):
for ds_value in ds_values:
cfg.test_ds[ds_key] = ds_value
model.setup_test_data(cfg.test_ds)
dataloaders.append(model._test_dl)
model._test_dl = dataloaders
model._test_names = [parse_dataset_as_name(ds) for ds in ds_values]
unique_names_check(name_list=model._test_names)
return
else:
model.setup_test_data(cfg.test_ds)
model._test_names = [parse_dataset_as_name(ds_values)]
unique_names_check(name_list=model._test_names)
@wrapt.decorator
def wrap_training_step(wrapped, instance: 'pl.LightningModule', args, kwargs):
output_dict = wrapped(*args, **kwargs)
if isinstance(output_dict, dict) and output_dict is not None and 'log' in output_dict:
log_dict = output_dict.pop('log')
instance.log_dict(log_dict, on_step=True)
return output_dict
def convert_model_config_to_dict_config(cfg: Union['DictConfig', 'NemoConfig']) -> 'DictConfig':
"""
Converts its input into a standard DictConfig.
Possible input values are:
- DictConfig
- A dataclass which is a subclass of NemoConfig
Args:
cfg: A dict-like object.
Returns:
The equivalent DictConfig
"""
if not _HAS_HYDRA:
logging.error("This function requires Hydra/Omegaconf and it was not installed.")
exit(1)
if not isinstance(cfg, (OmegaConf, DictConfig)) and is_dataclass(cfg):
cfg = OmegaConf.structured(cfg)
if not isinstance(cfg, DictConfig):
raise ValueError(f"cfg constructor argument must be of type DictConfig/dict but got {type(cfg)} instead.")
config = OmegaConf.to_container(cfg, resolve=True)
config = OmegaConf.create(config)
return config
def _convert_config(cfg: 'OmegaConf'):
""" Recursive function convertint the configuration from old hydra format to the new one. """
if not _HAS_HYDRA:
logging.error("This function requires Hydra/Omegaconf and it was not installed.")
exit(1)
# Get rid of cls -> _target_.
if 'cls' in cfg and '_target_' not in cfg:
cfg._target_ = cfg.pop('cls')
# Get rid of params.
if 'params' in cfg:
params = cfg.pop('params')
for param_key, param_val in params.items():
cfg[param_key] = param_val
# Recursion.
try:
for _, sub_cfg in cfg.items():
if isinstance(sub_cfg, DictConfig):
_convert_config(sub_cfg)
except omegaconf_errors.OmegaConfBaseException as e:
logging.warning(f"Skipped conversion for config/subconfig:\n{cfg}\n Reason: {e}.")
def maybe_update_config_version(cfg: 'DictConfig'):
"""
Recursively convert Hydra 0.x configs to Hydra 1.x configs.
Changes include:
- `cls` -> `_target_`.
- `params` -> drop params and shift all arguments to parent.
- `target` -> `_target_` cannot be performed due to ModelPT injecting `target` inside class.
Args:
cfg: Any Hydra compatible DictConfig
Returns:
An updated DictConfig that conforms to Hydra 1.x format.
"""
if not _HAS_HYDRA:
logging.error("This function requires Hydra/Omegaconf and it was not installed.")
exit(1)
if cfg is not None and not isinstance(cfg, DictConfig):
try:
temp_cfg = OmegaConf.create(cfg)
cfg = temp_cfg
except omegaconf_errors.OmegaConfBaseException:
# Cannot be cast to DictConfig, skip updating.
return cfg
# Make a copy of model config.
cfg = copy.deepcopy(cfg)
OmegaConf.set_struct(cfg, False)
# Convert config.
_convert_config(cfg)
# Update model config.
OmegaConf.set_struct(cfg, True)
return cfg
@lru_cache(maxsize=1024)
def import_class_by_path(path: str):
"""
Recursive import of class by path string.
"""
paths = path.split('.')
path = ".".join(paths[:-1])
class_name = paths[-1]
mod = __import__(path, fromlist=[class_name])
mod = getattr(mod, class_name)
return mod
def resolve_subclass_pretrained_model_info(base_class) -> List['PretrainedModelInfo']:
"""
Recursively traverses the inheritance graph of subclasses to extract all pretrained model info.
First constructs a set of unique pretrained model info by performing DFS over the inheritance graph.
All model info belonging to the same class is added together.
Args:
base_class: The root class, whose subclass graph will be traversed.
Returns:
A list of unique pretrained model infos belonging to all of the inherited subclasses of
this baseclass.
"""
list_of_models = set()
def recursive_subclass_walk(cls):
for subclass in cls.__subclasses__():
# step into its immediate subclass
recursive_subclass_walk(subclass)
subclass_models = subclass.list_available_models()
if subclass_models is not None and len(subclass_models) > 0:
# Inject subclass info into pretrained model info
# if not already overriden by subclass
for model_info in subclass_models:
# If subclass manually injects class_, dont override.
if model_info.class_ is None:
model_info.class_ = subclass
for model_info in subclass_models:
list_of_models.add(model_info)
recursive_subclass_walk(base_class)
list_of_models = list(sorted(list_of_models))
return list_of_models
def check_lib_version(lib_name: str, checked_version: str, operator) -> Tuple[Optional[bool], str]:
"""
Checks if a library is installed, and if it is, checks the operator(lib.__version__, checked_version) as a result.
This bool result along with a string analysis of result is returned.
If the library is not installed at all, then returns None instead, along with a string explaining
that the library is not installed
Args:
lib_name: lower case str name of the library that must be imported.
checked_version: semver string that is compared against lib.__version__.
operator: binary callable function func(a, b) -> bool; that compares lib.__version__ against version in
some manner. Must return a boolean.
Returns:
A tuple of results:
- Bool or None. Bool if the library could be imported, and the result of
operator(lib.__version__, checked_version) or False if __version__ is not implemented in lib.
None is passed if the library is not installed at all.
- A string analysis of the check.
"""
try:
if '.' in lib_name:
mod = import_class_by_path(lib_name)
else:
mod = __import__(lib_name)
if hasattr(mod, '__version__'):
lib_ver = version.Version(mod.__version__)
match_ver = version.Version(checked_version)
if operator(lib_ver, match_ver):
msg = f"Lib {lib_name} version is satisfied !"
return True, msg
else:
msg = (
f"Lib {lib_name} version ({lib_ver}) is not {operator.__name__} than required version {checked_version}.\n"
f"Please upgrade the lib using either pip or conda to the latest version."
)
return False, msg
else:
msg = (
f"Lib {lib_name} does not implement __version__ in its init file. "
f"Could not check version compatibility."
)
return False, msg
except (ImportError, ModuleNotFoundError):
pass
msg = f"Lib {lib_name} has not been installed. Please use pip or conda to install this package."
return None, msg
def uninject_model_parallel_rank(filepath):
filepath = str(filepath)
if 'mp_rank' in filepath or 'tp_rank' in filepath:
dirname = os.path.dirname(os.path.dirname(filepath))
basename = os.path.basename(filepath)
filepath = os.path.join(dirname, basename)
return filepath
else:
return filepath
def inject_model_parallel_rank(filepath):
"""
Injects tensor/pipeline model parallel ranks into the filepath.
Does nothing if not using model parallelism.
"""
# first make sure filepath does not have rank
filepath = uninject_model_parallel_rank(filepath)
app_state = AppState()
if app_state.model_parallel_size is not None and app_state.model_parallel_size > 1:
# filepath needs to be updated to include mp_rank
dirname = os.path.dirname(filepath)
basename = os.path.basename(filepath)
if app_state.pipeline_model_parallel_size is None or app_state.pipeline_model_parallel_size == 1:
filepath = f'{dirname}/mp_rank_{app_state.tensor_model_parallel_rank:02d}/{basename}'
else:
filepath = f'{dirname}/tp_rank_{app_state.tensor_model_parallel_rank:02d}_pp_rank_{app_state.pipeline_model_parallel_rank:03d}/{basename}'
return filepath
else:
return filepath
|