File size: 7,961 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import torch


def get_forward_hook(name, trainer, rank, logger, dump_to_file=False):
    """
    A forward hook to dump all of the module input and output norms. It is called at every time after forward() has computed an output.
    Only float type input/output tensor norms are computed.
    For more details about the forward hook, check https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html

    Args:
        name: tensor name
        trainer: PTL trainer
        rank: worker rank
        logger: PTL log function
        dump_to_file:  wether dump the csv file to the disk
    """
    if dump_to_file:
        os.makedirs('debug_info', exist_ok=True)
        fp = open(f'debug_info/forward_{name}_rank{rank}.txt', 'w')
        header = False

    def forward_hook(module, inputs, outputs):
        nonlocal header
        nonlocal fp
        if trainer.training:
            values = []
            headers = []
            for n, i in enumerate(inputs):
                if isinstance(i, torch.Tensor) and (
                    i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16
                ):
                    if not header:
                        headers.append('input')
                    input_norm = i.data.norm()
                    values.append(f'{input_norm}')
                    logger(f'debug_info_forward/{name}_rank{rank}_input{n}', input_norm)
            if isinstance(outputs, tuple):
                for n, i in enumerate(outputs):
                    if isinstance(i, torch.Tensor) and (
                        i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16
                    ):
                        if not header:
                            headers.append('output')
                        output_norm = i.data.norm()
                        values.append(f'{output_norm}')
                        logger(f'debug_info_forward/{name}_rank{rank}_output{n}', output_norm)
            else:
                headers.append('output')
                values.append(f'{outputs.data.norm()}')
            values.append(f'{trainer.global_step}')
            if not header:
                headers.append('step')
                fp.write(','.join(headers) + '\n')
                header = True
            fp.write(','.join(values) + '\n')
        fp.flush()

    return forward_hook


def get_backward_hook(name, trainer, rank, logger, dump_to_file=False):
    """
    A backward hook to dump all of the module input and output grad norms. The hook will be called every time the gradients with respect to module inputs are computed.
    Only float type input/output grad tensor norms are computed.
    For more details about the backward hook, check https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_full_backward_hook.html

    Args:
        name: tensor name
        trainer: PTL trainer
        rank: worker rank
        logger: PTL log function
        dump_to_file:  wether dump the csv file to the disk
    """
    if dump_to_file:
        os.makedirs('debug_info', exist_ok=True)
        fp = open(f'debug_info/backward_{name}_rank{rank}.txt', 'w')
        header = False

    def backward_hook(module, inputs, outputs):
        nonlocal header
        nonlocal fp
        if trainer.training:
            values = []
            headers = []
            for n, i in enumerate(inputs):
                if isinstance(i, torch.Tensor) and (
                    i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16
                ):
                    if not header:
                        headers.append('input')
                    input_norm = i.data.norm()
                    values.append(f'{input_norm}')
                    logger(f'debug_info_backward/{name}_rank{rank}_input{n}', input_norm)
            if isinstance(outputs, tuple):
                for n, i in enumerate(outputs):
                    if isinstance(i, torch.Tensor) and (
                        i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16
                    ):
                        if not header:
                            headers.append('output')
                        output_norm = i.data.norm()
                        values.append(f'{output_norm}')
                        logger(f'debug_info_backward/{name}_rank{rank}_output{n}', output_norm)
            else:
                headers.append('output')
                values.append(f'{outputs.data.norm()}')
            values.append(f'{trainer.global_step}')
            if not header:
                headers.append('step')
                fp.write(','.join(headers) + '\n')
                header = True
            fp.write(','.join(values) + '\n')
        fp.flush()

    return backward_hook


def get_tensor_hook(module, name, trainer, rank, logger, dump_to_file=False):
    """
    A tensor hook to dump all of the tensor weight norms and grad norms at the end of each of the backward steps. 
    For more details about the tensor hook, check https://pytorch.org/docs/stable/generated/torch.Tensor.register_hook.html 

    Args:
        module: the model module 
        name: tensor name
        trainer: PTL trainer
        rank: worker rank
        logger: PTL log function
        dump_to_file:  wether dump the csv file to the disk
    """
    if dump_to_file:
        os.makedirs('debug_info', exist_ok=True)
        fp = open(f'debug_info/tensor_{name}_rank{rank}.csv', 'w')
        header = False

    def tensor_hook(grad):
        nonlocal header
        nonlocal fp
        values = []
        headers = []

        weight = module.get_parameter(name)
        weight_norm = weight.data.norm()
        grad_norm = grad.data.norm()
        logger(f'debug_info_tensors/{name}_rank{rank}_grad_norm', grad_norm)
        logger(f'debug_info_tensors/{name}_rank{rank}_weight_norm', weight_norm)
        values.append(f'{weight_norm}')
        values.append(f'{grad_norm}')
        values.append(f'{trainer.global_step}')
        if dump_to_file:
            if not header:
                headers.append('weight')
                headers.append('grad')
                headers.append('step')
                fp.write(','.join(headers) + '\n')
                header = True
            fp.write(','.join(values) + '\n')
            fp.flush()
        return grad

    return tensor_hook


def register_debug_hooks(module, trainer, logger, dump_to_file=False):
    """
    Register debug hooks. It can
    1. track the module forward step input/ouput norm
    2. track the module backward step input/output grad norm
    3. track the parameter weight norm and grad norm.
    """
    # default rank 0
    rank = 0
    if torch.distributed.is_initialized():
        rank = torch.distributed.get_rank()
    for name, tensor in module.named_parameters():
        if name != '':
            tensor.register_hook(get_tensor_hook(module, name, trainer, rank, logger, dump_to_file))
    for name, layer in module.named_modules():
        if name != '':
            layer.register_forward_hook(get_forward_hook(name, trainer, rank, logger, dump_to_file))
            layer.register_full_backward_hook(get_backward_hook(name, trainer, rank, logger, dump_to_file))