File size: 22,692 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
import torch
from nemo.utils import logging
try:
import amp_C
from apex.multi_tensor_apply import multi_tensor_applier
from apex.transformer.parallel_state import get_data_parallel_group, get_data_parallel_world_size
from apex.transformer.tensor_parallel import copy_tensor_model_parallel_attributes
HAVE_APEX = True
except (ImportError, ModuleNotFoundError):
HAVE_APEX = False
def _zero_grad_group_helper(group, set_to_none):
"""Zero out the gradient for a group of parameters.
Note: copied from torch.optim.optimizer."""
for param in group:
if param.grad is not None:
if set_to_none:
param.grad = None
else:
if param.grad.grad_fn is not None:
param.grad.detach_()
else:
param.grad.requires_grad_(False)
param.grad.zero_()
def _multi_tensor_copy_this_to_that(this, that, overflow_buf):
"""Use multi-tensor-applier to copy values from one list to another.
We don't have a blfoat16 implementation so for now if the overflow_buf
is not provided, we default back to simple loop copy to be compatible
with bfloat16."""
if overflow_buf:
# Scaling with factor `1.0` is equivalent to copy.
multi_tensor_applier(amp_C.multi_tensor_scale, overflow_buf, [this, that], 1.0)
else:
# FIXME: use multi-tensor applier for bf16
for this_, that_ in zip(this, that):
that_.copy_(this_)
class GradBucket(object):
"""
Persistent buffer for main gradients that remains allocated between training iterations
"""
def __init__(self, numel, chunk_size_mb):
if not HAVE_APEX:
raise ImportError(
"Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt."
)
self.numel = numel
self.data = torch.zeros(self.numel, dtype=torch.float, device=torch.cuda.current_device(), requires_grad=False)
self.chunk_size_mb = chunk_size_mb
if self.chunk_size_mb > 0:
chunk_size_bytes = chunk_size_mb * 1024 * 1024
self.chunk_size_numel = chunk_size_bytes // 4
self.num_chunks = self.numel // self.chunk_size_numel
self.numel_per_chunk = [self.chunk_size_numel] * self.num_chunks
if self.numel % self.chunk_size_numel != 0:
self.num_chunks += 1
self.numel_per_chunk.append(self.numel % self.chunk_size_numel)
self.start_index_per_chunk = torch.cumsum(torch.tensor([0] + self.numel_per_chunk[:-1]), dim=0)
self.current_chunk = 0
self.computed_numel_per_chunk = [0] * self.num_chunks
def zero(self):
"""Reset the buffer to zero."""
self.data.zero_()
def allreduce_buffer(self):
"""Synchronous buffer data allreduce """
self.data.div_(get_data_parallel_world_size())
torch.distributed.all_reduce(self.data, group=get_data_parallel_group())
def get(self, shape, start_index):
"""Return a tensor with the input `shape` as a view into the
1-D data starting at `start_index`."""
end_index = start_index + shape.numel()
assert end_index <= self.numel, 'requested tensor is out of the buffer range.'
buffer_tensor = self.data[start_index:end_index]
buffer_tensor = buffer_tensor.view(shape)
grad_chunk_info = None
if self.chunk_size_mb > 0:
grad_chunk_info = {}
chunk = start_index // self.chunk_size_numel
chunk_start_index = self.start_index_per_chunk[chunk]
chunk_end_index = chunk_start_index + self.numel_per_chunk[chunk]
grad_chunk_info[chunk] = min(chunk_end_index, end_index) - start_index
while chunk_end_index < end_index:
chunk += 1
chunk_start_index = self.start_index_per_chunk[chunk]
chunk_end_index = chunk_start_index + self.numel_per_chunk[chunk]
grad_chunk_info[chunk] = min(chunk_end_index, end_index) - chunk_start_index
return buffer_tensor, grad_chunk_info
def update_chunk_info(self, grad_chunk_info):
for chunk in grad_chunk_info.keys():
self.computed_numel_per_chunk[chunk] += grad_chunk_info[chunk]
def get_allreduce_tensor(self):
if self.computed_numel_per_chunk[self.current_chunk] == self.numel_per_chunk[self.current_chunk]:
chunk_start_index = self.start_index_per_chunk[self.current_chunk]
chunk_end_index = chunk_start_index + self.numel_per_chunk[self.current_chunk]
allreduce_tensor = self.data[chunk_start_index:chunk_end_index]
self.computed_numel_per_chunk[self.current_chunk] = 0
self.current_chunk += 1
if self.current_chunk == self.num_chunks:
self.current_chunk = 0
return allreduce_tensor
return None
class MainParamsOptimizerWrapper(torch.optim.Optimizer):
"""
Float16 optimizer wrapper for half precision (fp16 and bf16) data types.
This optimizer wrapper holds main parameters and gradients in fp32 to support
stable convergence.
Arguments:
optimizer: base optimizer such as Adam or SGD.
fp32_grad_accum: to enable the use of fp32 in gradient accumulation and allreduce.
contiguous_grad_bucket: to enable allocating the master gradients in the
contiguous memory space to reduce memory fragmentation.
async_grad_allreduce: enable asynchronous gradient allreduce that is executed
along with the training step backprop.
"""
def __init__(
self,
optimizer,
fp32_grad_accum=False,
contiguous_grad_bucket=False,
async_grad_allreduce=False,
grad_div_ar_fusion=True,
grad_allreduce_chunk_size_mb=0,
):
if not HAVE_APEX:
raise ImportError(
"Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt."
)
self.optimizer = optimizer
assert self.optimizer, 'no optimizer is provided.'
if contiguous_grad_bucket:
assert fp32_grad_accum, 'contiguous gradient buffer assumes using fp32 grad.'
if async_grad_allreduce:
assert fp32_grad_accum, (
'async allreduce applies to master gradients only, '
'which is supposed to be accumulated after grad op.'
)
assert contiguous_grad_bucket, (
'currently async_grad_allreduce is supported only ' 'with contiguous_grad_bucket.'
)
self._fp32_grad_accum = fp32_grad_accum
self._contiguous_grad_bucket = contiguous_grad_bucket
# used with tensor parallel only (no pipeline parallelism)
# be careful, weight update cannot start until all async grad AR works are done
self._async_grad_allreduce = async_grad_allreduce and get_data_parallel_world_size() > 1
self._grad_divisor = 1 / get_data_parallel_world_size()
if self._async_grad_allreduce:
# use @no_sync to disable backward grad sync during gradient accumulation
self._require_backward_grad_sync = True
self._grad_div_ar_fusion = grad_div_ar_fusion
self._grad_allreduce_chunk_size_mb = grad_allreduce_chunk_size_mb
else:
self._require_backward_grad_sync = False
self._grad_div_ar_fusion = False
self._grad_allreduce_chunk_size_mb = 0
# Dummy tensor needed for apex multi-apply tensor.
self._dummy_overflow_buf = None
# Create persistent buffers for main gradients in contiguous memory space
# - Chunked element-wise and allreduce ops without creating a temporary buffer for merged operation
# - Low memory fragmentation
self._main_grad_buffers = None
if self._contiguous_grad_bucket:
self._main_grad_buffers = {}
# get the size of buffers
num_elements = {}
for i, param_group in enumerate(self.optimizer.param_groups):
for param in param_group['params']:
if param.requires_grad:
num_elements[i] = num_elements.get(i, 0) + param.data.nelement()
# Allocate gradient memory buffers for each data type
if any(param.requires_grad for param in param_group['params']):
self._main_grad_buffers[i] = GradBucket(num_elements[i], self._grad_allreduce_chunk_size_mb)
# Three groups of parameters:
self.float16_groups = [] # original float16 parameters
self.fp32_from_float16_groups = [] # fp32 copy of float16 parameters
self.fp32_from_fp32_groups = [] # original fp32 parameters
# gradient function hooks
if self._fp32_grad_accum:
self.grad_accs = []
# For all the groups in the original optimizer:
for i, param_group in enumerate(self.optimizer.param_groups):
float16_params_this_group = []
fp32_params_this_group = []
fp32_from_float16_params_this_group = []
# For all the parameters in this group:
for j, param in enumerate(param_group['params']):
if param.requires_grad:
# float16 params:
if param.type() in ['torch.cuda.HalfTensor', 'torch.cuda.BFloat16Tensor']:
float16_params_this_group.append(param)
# Allocate the main parameter
main_param = param.detach().clone().float()
# Copy tensor model parallel attributes.
copy_tensor_model_parallel_attributes(main_param, param)
if hasattr(param, 'shared'):
main_param.shared = param.shared
# Assign the grad buffer offset to main parameters
if self._contiguous_grad_bucket:
num_elements[i] -= param.data.nelement()
main_param.grad, grad_chunk_info = self._main_grad_buffers[i].get(
param.data.shape, num_elements[i]
)
# Add a pointer to main_grad in model param for first-last stage embedding param reduction
param.main_grad = main_param.grad
# Replace the optimizer params with the new fp32 copy.
param_group['params'][j] = main_param
fp32_from_float16_params_this_group.append(main_param)
# Reset existing state dict key to the new main param.
if param in self.optimizer.state:
self.optimizer.state[main_param] = self.optimizer.state.pop(param)
# fp32 params.
elif param.type() == 'torch.cuda.FloatTensor':
fp32_params_this_group.append(param)
param_group['params'][j] = param
else:
raise TypeError(
'Wrapped parameters must be one of '
'torch.cuda.FloatTensor, '
'torch.cuda.HalfTensor, or '
'torch.cuda.BFloat16Tensor. '
'Received {}'.format(param.type())
)
# Add gradient accumulation hook for fp32 grad accumulation
if self._fp32_grad_accum and param.requires_grad:
# Expand so we get access to grad_fn
param_tmp = param.expand_as(param)
# Get the gradient accumulator function.
grad_acc = param_tmp.grad_fn.next_functions[0][0]
grad_acc.register_hook(self._make_param_hook(param, main_param, i, grad_chunk_info))
self.grad_accs.append(grad_acc)
self.float16_groups.append(float16_params_this_group)
self.fp32_from_float16_groups.append(fp32_from_float16_params_this_group)
self.fp32_from_fp32_groups.append(fp32_params_this_group)
# Leverage state_dict() and load_state_dict() to
# recast preexisting per-param state tensors
self.optimizer.load_state_dict(self.optimizer.state_dict())
def _make_param_hook(self, param, main_param, i, grad_chunk_info):
"""Create the grad accumulation and all-reduce hook for backprop."""
# Hook used for back-prop.
def param_hook(*unused):
# Accumulates gradients on main gradients
if param.grad is not None:
if main_param.grad is None:
main_param.grad = param.grad.float()
else:
main_param.grad.add_(param.grad.data)
# Deallocate grad memory.
param.grad = None
# Asynchronous gradients allreduce accross data_parallel ranks
if self._require_backward_grad_sync:
if self._grad_allreduce_chunk_size_mb > 0:
self._main_grad_buffers[i].update_chunk_info(grad_chunk_info)
while True:
allreduce_tensor = self._main_grad_buffers[i].get_allreduce_tensor()
if allreduce_tensor is None:
break
if self._grad_div_ar_fusion:
torch.distributed.all_reduce(
allreduce_tensor,
group=get_data_parallel_group(),
async_op=True,
op=torch.distributed._make_nccl_premul_sum(self._grad_divisor),
)
else:
allreduce_tensor.div_(get_data_parallel_world_size())
torch.distributed.all_reduce(
allreduce_tensor, group=get_data_parallel_group(), async_op=True,
)
else:
if self._grad_div_ar_fusion:
torch.distributed.all_reduce(
main_param.grad,
group=get_data_parallel_group(),
async_op=True,
op=torch.distributed._make_nccl_premul_sum(self._grad_divisor),
)
else:
main_param.grad.div_(get_data_parallel_world_size())
torch.distributed.all_reduce(
main_param.grad, group=get_data_parallel_group(), async_op=True,
)
return param_hook
def zero_grad(self, set_to_none=True):
"""We only need to zero the model related parameters, i.e.,
float16_groups & fp32_from_fp32_groups. We additionally zero
fp32_from_float16_groups as a memory optimization to reduce
fragmentation; in the case of set_to_none==True, the space
used by this field can be safely deallocated at this point."""
for group in self.float16_groups:
_zero_grad_group_helper(group, set_to_none)
if self._contiguous_grad_bucket:
for i in self._main_grad_buffers:
self._main_grad_buffers[i].zero()
else:
for group in self.fp32_from_float16_groups:
_zero_grad_group_helper(group, set_to_none)
for group in self.fp32_from_fp32_groups:
_zero_grad_group_helper(group, set_to_none)
def copy_model_grads_to_main_grads(self):
# This only needs to be done for the float16 group.
for model_group, main_group in zip(self.float16_groups, self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
if model_param.grad is not None:
main_param.grad = model_param.grad.float()
# Safe to deallocate model's grad after copying.
# (If using contiguous buffers, main_grad's memory should
# persist and therefore should not be deallocated.)
model_param.grad = None
def _get_model_and_main_params_data_float16(self):
model_data = []
main_data = []
half_dtype = None
for model_group, main_group in zip(self.float16_groups, self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
if half_dtype is None:
half_dtype = model_param.data.dtype
model_data.append(model_param.data)
main_data.append(main_param.data)
return model_data, main_data, half_dtype
def _set_overflow_buffer(self, half_dtype):
if half_dtype == torch.float16:
if self._dummy_overflow_buf is None:
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
else:
self._dummy_overflow_buf.fill_(0)
def _copy_main_params_to_model_params(self):
# Only needed for the float16 params.
model_data, main_data, half_dtype = self._get_model_and_main_params_data_float16()
self._set_overflow_buffer(half_dtype)
_multi_tensor_copy_this_to_that(this=main_data, that=model_data, overflow_buf=self._dummy_overflow_buf)
def _copy_model_params_to_main_params(self):
# Only needed for the float16 params.
model_data, main_data, half_dtype = self._get_model_and_main_params_data_float16()
self._set_overflow_buffer(half_dtype)
_multi_tensor_copy_this_to_that(this=model_data, that=main_data, overflow_buf=self._dummy_overflow_buf)
def reload_model_params(self):
self._copy_model_params_to_main_params()
@torch.no_grad()
def step(self, **kwargs):
# while async grad allreduce is enabled, bprop will keep moving forward without waiting for
# the finish of async grad AR works. Hence, to guarantee the correctness of grads reduction,
# we cannot start weight update until all async grad AR works are done.
if self._async_grad_allreduce:
torch.cuda.synchronize()
# Step the optimizer.
self.optimizer.step(closure=None, **kwargs)
# Update params from main params.
with torch.no_grad():
self._copy_main_params_to_model_params()
# Successful update.
return True
def state_dict(self):
state_dict = {}
state_dict['optimizer'] = self.optimizer.state_dict()
state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
return state_dict
def load_state_dict(self, state_dict):
# Optimizer.
optimizer_key = 'optimizer'
if optimizer_key not in state_dict:
optimizer_key = 'optimizer_state_dict'
logging.info('***WARNING*** loading optimizer from ' 'an old checkpoint ...')
self.optimizer.load_state_dict(state_dict[optimizer_key])
# Copy data for the main params.
fp32_from_float16_params_key = 'fp32_from_fp16_params'
if fp32_from_float16_params_key not in state_dict:
fp32_from_float16_params_key = 'fp32_from_fp16'
for current_group, saved_group in zip(self.fp32_from_float16_groups, state_dict[fp32_from_float16_params_key]):
for current_param, saved_param in zip(current_group, saved_group):
current_param.data.copy_(saved_param.data)
def allreduce_main_grads(self):
for i in self._main_grad_buffers:
self._main_grad_buffers[i].allreduce_buffer()
@contextmanager
def no_sync(self):
""" A context manager to disable gradient synchronizations across
data-parallel ranks."""
old_require_backward_grad_sync = self._require_backward_grad_sync
self._require_backward_grad_sync = False
try:
yield
finally:
self._require_backward_grad_sync = old_require_backward_grad_sync
@property
def async_master_grads_allreudce(self):
return self._async_grad_allreduce
@property
def fp32_grad_accumulation(self):
return self._fp32_grad_accum
def get_parameters(self):
params = []
for param_group in self.optimizer.param_groups:
for param in param_group['params']:
params.append(param)
return params
# Promote state so it can be retrieved or set via
# "optimizer_instance.state"
def _get_state(self):
if hasattr(self, 'optimizer'):
return self.optimizer.state
else:
return []
def _set_state(self, value):
self.optimizer.state = value
state = property(_get_state, _set_state)
# Promote param_groups so it can be retrieved or set via
# "optimizer_instance.param_groups"
# (for example, to adjust the learning rate)
def _get_param_groups(self):
if hasattr(self, 'optimizer'):
return self.optimizer.param_groups
else:
return []
def _set_param_groups(self, value):
self.optimizer.param_groups = value
param_groups = property(_get_param_groups, _set_param_groups)
# Promote defaults so it can be retrieved or set via
# "optimizer_instance.defaults
def _get_defaults(self):
if hasattr(self, 'optimizer'):
return self.optimizer.defaults
else:
return []
def _set_defaults(self, value):
self.optimizer.defaults = value
defaults = property(_get_defaults, _set_defaults)
|