File size: 22,692 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from contextlib import contextmanager

import torch

from nemo.utils import logging

try:
    import amp_C
    from apex.multi_tensor_apply import multi_tensor_applier
    from apex.transformer.parallel_state import get_data_parallel_group, get_data_parallel_world_size
    from apex.transformer.tensor_parallel import copy_tensor_model_parallel_attributes

    HAVE_APEX = True

except (ImportError, ModuleNotFoundError):

    HAVE_APEX = False


def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


def _multi_tensor_copy_this_to_that(this, that, overflow_buf):
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
    if overflow_buf:
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale, overflow_buf, [this, that], 1.0)
    else:
        # FIXME: use multi-tensor applier for bf16
        for this_, that_ in zip(this, that):
            that_.copy_(this_)


class GradBucket(object):
    """
    Persistent buffer for main gradients that remains allocated between training iterations
    """

    def __init__(self, numel, chunk_size_mb):
        if not HAVE_APEX:
            raise ImportError(
                "Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt."
            )

        self.numel = numel
        self.data = torch.zeros(self.numel, dtype=torch.float, device=torch.cuda.current_device(), requires_grad=False)

        self.chunk_size_mb = chunk_size_mb
        if self.chunk_size_mb > 0:
            chunk_size_bytes = chunk_size_mb * 1024 * 1024
            self.chunk_size_numel = chunk_size_bytes // 4
            self.num_chunks = self.numel // self.chunk_size_numel
            self.numel_per_chunk = [self.chunk_size_numel] * self.num_chunks
            if self.numel % self.chunk_size_numel != 0:
                self.num_chunks += 1
                self.numel_per_chunk.append(self.numel % self.chunk_size_numel)

            self.start_index_per_chunk = torch.cumsum(torch.tensor([0] + self.numel_per_chunk[:-1]), dim=0)
            self.current_chunk = 0
            self.computed_numel_per_chunk = [0] * self.num_chunks

    def zero(self):
        """Reset the buffer to zero."""
        self.data.zero_()

    def allreduce_buffer(self):
        """Synchronous buffer data allreduce """
        self.data.div_(get_data_parallel_world_size())
        torch.distributed.all_reduce(self.data, group=get_data_parallel_group())

    def get(self, shape, start_index):
        """Return a tensor with the input `shape` as a view into the
        1-D data starting at `start_index`."""
        end_index = start_index + shape.numel()
        assert end_index <= self.numel, 'requested tensor is out of the buffer range.'
        buffer_tensor = self.data[start_index:end_index]
        buffer_tensor = buffer_tensor.view(shape)

        grad_chunk_info = None
        if self.chunk_size_mb > 0:
            grad_chunk_info = {}
            chunk = start_index // self.chunk_size_numel
            chunk_start_index = self.start_index_per_chunk[chunk]
            chunk_end_index = chunk_start_index + self.numel_per_chunk[chunk]
            grad_chunk_info[chunk] = min(chunk_end_index, end_index) - start_index
            while chunk_end_index < end_index:
                chunk += 1
                chunk_start_index = self.start_index_per_chunk[chunk]
                chunk_end_index = chunk_start_index + self.numel_per_chunk[chunk]
                grad_chunk_info[chunk] = min(chunk_end_index, end_index) - chunk_start_index

        return buffer_tensor, grad_chunk_info

    def update_chunk_info(self, grad_chunk_info):
        for chunk in grad_chunk_info.keys():
            self.computed_numel_per_chunk[chunk] += grad_chunk_info[chunk]

    def get_allreduce_tensor(self):
        if self.computed_numel_per_chunk[self.current_chunk] == self.numel_per_chunk[self.current_chunk]:
            chunk_start_index = self.start_index_per_chunk[self.current_chunk]
            chunk_end_index = chunk_start_index + self.numel_per_chunk[self.current_chunk]
            allreduce_tensor = self.data[chunk_start_index:chunk_end_index]

            self.computed_numel_per_chunk[self.current_chunk] = 0
            self.current_chunk += 1
            if self.current_chunk == self.num_chunks:
                self.current_chunk = 0

            return allreduce_tensor

        return None


class MainParamsOptimizerWrapper(torch.optim.Optimizer):
    """
    Float16 optimizer wrapper for half precision (fp16 and bf16) data types.
    This optimizer wrapper holds main parameters and gradients in fp32 to support
    stable convergence.

    Arguments:
        optimizer: base optimizer such as Adam or SGD.
        fp32_grad_accum: to enable the use of fp32 in gradient accumulation and allreduce.
        contiguous_grad_bucket: to enable allocating the master gradients in the 
            contiguous memory space to reduce memory fragmentation.
        async_grad_allreduce: enable asynchronous gradient allreduce that is executed
            along with the training step backprop.
    """

    def __init__(
        self,
        optimizer,
        fp32_grad_accum=False,
        contiguous_grad_bucket=False,
        async_grad_allreduce=False,
        grad_div_ar_fusion=True,
        grad_allreduce_chunk_size_mb=0,
    ):
        if not HAVE_APEX:
            raise ImportError(
                "Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt."
            )

        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
        if contiguous_grad_bucket:
            assert fp32_grad_accum, 'contiguous gradient buffer assumes using fp32 grad.'
        if async_grad_allreduce:
            assert fp32_grad_accum, (
                'async allreduce applies to master gradients only, '
                'which is supposed to be accumulated after grad op.'
            )
            assert contiguous_grad_bucket, (
                'currently async_grad_allreduce is supported only ' 'with contiguous_grad_bucket.'
            )

        self._fp32_grad_accum = fp32_grad_accum
        self._contiguous_grad_bucket = contiguous_grad_bucket

        # used with tensor parallel only (no pipeline parallelism)
        # be careful, weight update cannot start until all async grad AR works are done
        self._async_grad_allreduce = async_grad_allreduce and get_data_parallel_world_size() > 1
        self._grad_divisor = 1 / get_data_parallel_world_size()

        if self._async_grad_allreduce:
            # use @no_sync to disable backward grad sync during gradient accumulation
            self._require_backward_grad_sync = True
            self._grad_div_ar_fusion = grad_div_ar_fusion
            self._grad_allreduce_chunk_size_mb = grad_allreduce_chunk_size_mb
        else:
            self._require_backward_grad_sync = False
            self._grad_div_ar_fusion = False
            self._grad_allreduce_chunk_size_mb = 0

        # Dummy tensor needed for apex multi-apply tensor.
        self._dummy_overflow_buf = None

        # Create persistent buffers for main gradients in contiguous memory space
        # - Chunked element-wise and allreduce ops without creating a temporary buffer for merged operation
        # - Low memory fragmentation
        self._main_grad_buffers = None
        if self._contiguous_grad_bucket:
            self._main_grad_buffers = {}
            # get the size of buffers
            num_elements = {}
            for i, param_group in enumerate(self.optimizer.param_groups):
                for param in param_group['params']:
                    if param.requires_grad:
                        num_elements[i] = num_elements.get(i, 0) + param.data.nelement()

                # Allocate gradient memory buffers for each data type
                if any(param.requires_grad for param in param_group['params']):
                    self._main_grad_buffers[i] = GradBucket(num_elements[i], self._grad_allreduce_chunk_size_mb)

        # Three groups of parameters:
        self.float16_groups = []  # original float16 parameters
        self.fp32_from_float16_groups = []  # fp32 copy of float16 parameters
        self.fp32_from_fp32_groups = []  # original fp32 parameters

        # gradient function hooks
        if self._fp32_grad_accum:
            self.grad_accs = []

        # For all the groups in the original optimizer:
        for i, param_group in enumerate(self.optimizer.param_groups):
            float16_params_this_group = []
            fp32_params_this_group = []
            fp32_from_float16_params_this_group = []
            # For all the parameters in this group:
            for j, param in enumerate(param_group['params']):
                if param.requires_grad:
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor', 'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)

                        # Allocate the main parameter
                        main_param = param.detach().clone().float()

                        # Copy tensor model parallel attributes.
                        copy_tensor_model_parallel_attributes(main_param, param)
                        if hasattr(param, 'shared'):
                            main_param.shared = param.shared

                        # Assign the grad buffer offset to main parameters
                        if self._contiguous_grad_bucket:
                            num_elements[i] -= param.data.nelement()
                            main_param.grad, grad_chunk_info = self._main_grad_buffers[i].get(
                                param.data.shape, num_elements[i]
                            )
                            # Add a pointer to main_grad in model param for first-last stage embedding param reduction
                            param.main_grad = main_param.grad

                        # Replace the optimizer params with the new fp32 copy.
                        param_group['params'][j] = main_param
                        fp32_from_float16_params_this_group.append(main_param)
                        # Reset existing state dict key to the new main param.
                        if param in self.optimizer.state:
                            self.optimizer.state[main_param] = self.optimizer.state.pop(param)
                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][j] = param

                    else:
                        raise TypeError(
                            'Wrapped parameters must be one of '
                            'torch.cuda.FloatTensor,  '
                            'torch.cuda.HalfTensor, or '
                            'torch.cuda.BFloat16Tensor. '
                            'Received {}'.format(param.type())
                        )

                # Add gradient accumulation hook for fp32 grad accumulation
                if self._fp32_grad_accum and param.requires_grad:
                    # Expand so we get access to grad_fn
                    param_tmp = param.expand_as(param)
                    # Get the gradient accumulator function.
                    grad_acc = param_tmp.grad_fn.next_functions[0][0]
                    grad_acc.register_hook(self._make_param_hook(param, main_param, i, grad_chunk_info))
                    self.grad_accs.append(grad_acc)

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(fp32_from_float16_params_this_group)
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

    def _make_param_hook(self, param, main_param, i, grad_chunk_info):
        """Create the grad accumulation and all-reduce hook for backprop."""
        # Hook used for back-prop.
        def param_hook(*unused):
            # Accumulates gradients on main gradients
            if param.grad is not None:
                if main_param.grad is None:
                    main_param.grad = param.grad.float()
                else:
                    main_param.grad.add_(param.grad.data)
                # Deallocate grad memory.
                param.grad = None

            # Asynchronous gradients allreduce accross data_parallel ranks
            if self._require_backward_grad_sync:
                if self._grad_allreduce_chunk_size_mb > 0:
                    self._main_grad_buffers[i].update_chunk_info(grad_chunk_info)
                    while True:
                        allreduce_tensor = self._main_grad_buffers[i].get_allreduce_tensor()
                        if allreduce_tensor is None:
                            break
                        if self._grad_div_ar_fusion:
                            torch.distributed.all_reduce(
                                allreduce_tensor,
                                group=get_data_parallel_group(),
                                async_op=True,
                                op=torch.distributed._make_nccl_premul_sum(self._grad_divisor),
                            )
                        else:
                            allreduce_tensor.div_(get_data_parallel_world_size())
                            torch.distributed.all_reduce(
                                allreduce_tensor, group=get_data_parallel_group(), async_op=True,
                            )
                else:
                    if self._grad_div_ar_fusion:
                        torch.distributed.all_reduce(
                            main_param.grad,
                            group=get_data_parallel_group(),
                            async_op=True,
                            op=torch.distributed._make_nccl_premul_sum(self._grad_divisor),
                        )
                    else:
                        main_param.grad.div_(get_data_parallel_world_size())
                        torch.distributed.all_reduce(
                            main_param.grad, group=get_data_parallel_group(), async_op=True,
                        )

        return param_hook

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
        for group in self.float16_groups:
            _zero_grad_group_helper(group, set_to_none)
        if self._contiguous_grad_bucket:
            for i in self._main_grad_buffers:
                self._main_grad_buffers[i].zero()
        else:
            for group in self.fp32_from_float16_groups:
                _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)

    def copy_model_grads_to_main_grads(self):
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups, self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                if model_param.grad is not None:
                    main_param.grad = model_param.grad.float()

                # Safe to deallocate model's grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None

    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        half_dtype = None
        for model_group, main_group in zip(self.float16_groups, self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                if half_dtype is None:
                    half_dtype = model_param.data.dtype
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data, half_dtype

    def _set_overflow_buffer(self, half_dtype):
        if half_dtype == torch.float16:
            if self._dummy_overflow_buf is None:
                self._dummy_overflow_buf = torch.cuda.IntTensor([0])
            else:
                self._dummy_overflow_buf.fill_(0)

    def _copy_main_params_to_model_params(self):
        # Only needed for the float16 params.
        model_data, main_data, half_dtype = self._get_model_and_main_params_data_float16()
        self._set_overflow_buffer(half_dtype)
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data, overflow_buf=self._dummy_overflow_buf)

    def _copy_model_params_to_main_params(self):
        # Only needed for the float16 params.
        model_data, main_data, half_dtype = self._get_model_and_main_params_data_float16()
        self._set_overflow_buffer(half_dtype)
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data, overflow_buf=self._dummy_overflow_buf)

    def reload_model_params(self):
        self._copy_model_params_to_main_params()

    @torch.no_grad()
    def step(self, **kwargs):
        # while async grad allreduce is enabled, bprop will keep moving forward without waiting for
        # the finish of async grad AR works. Hence, to guarantee the correctness of grads reduction,
        # we cannot start weight update until all async grad AR works are done.
        if self._async_grad_allreduce:
            torch.cuda.synchronize()

        # Step the optimizer.
        self.optimizer.step(closure=None, **kwargs)

        # Update params from main params.
        with torch.no_grad():
            self._copy_main_params_to_model_params()

        # Successful update.
        return True

    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
        return state_dict

    def load_state_dict(self, state_dict):
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            logging.info('***WARNING*** loading optimizer from ' 'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Copy data for the main params.
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
        for current_group, saved_group in zip(self.fp32_from_float16_groups, state_dict[fp32_from_float16_params_key]):
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)

    def allreduce_main_grads(self):
        for i in self._main_grad_buffers:
            self._main_grad_buffers[i].allreduce_buffer()

    @contextmanager
    def no_sync(self):
        """ A context manager to disable gradient synchronizations across
        data-parallel ranks."""
        old_require_backward_grad_sync = self._require_backward_grad_sync
        self._require_backward_grad_sync = False
        try:
            yield
        finally:
            self._require_backward_grad_sync = old_require_backward_grad_sync

    @property
    def async_master_grads_allreudce(self):
        return self._async_grad_allreduce

    @property
    def fp32_grad_accumulation(self):
        return self._fp32_grad_accum

    def get_parameters(self):
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
        return params

    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        if hasattr(self, 'optimizer'):
            return self.optimizer.state
        else:
            return []

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        if hasattr(self, 'optimizer'):
            return self.optimizer.param_groups
        else:
            return []

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)

    # Promote defaults so it can be retrieved or set via
    # "optimizer_instance.defaults
    def _get_defaults(self):
        if hasattr(self, 'optimizer'):
            return self.optimizer.defaults
        else:
            return []

    def _set_defaults(self, value):
        self.optimizer.defaults = value

    defaults = property(_get_defaults, _set_defaults)