File size: 38,258 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import dataclasses
import inspect
import math
import warnings
from functools import partial
from typing import Any, Dict, Optional, Union
import hydra
import torch.optim as optim
import torch.optim.lr_scheduler as pt_scheduler
import torch.utils.data.dataloader as dataloader
from omegaconf import DictConfig, OmegaConf
from torch.optim.lr_scheduler import _LRScheduler
from nemo.core.config import SchedulerParams, get_scheduler_config, register_scheduler_params
from nemo.utils import logging
from nemo.utils.model_utils import maybe_update_config_version
class WarmupPolicy(_LRScheduler):
"""Adds warmup kwargs and warmup logic to lr policy.
All arguments should be passed as kwargs for clarity,
Args:
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
"""
def __init__(self, optimizer, *, warmup_steps=None, warmup_ratio=None, max_steps=None, min_lr=0.0, last_epoch=-1):
assert not (
warmup_steps is not None and warmup_ratio is not None
), "Either use particular number of step or ratio"
assert warmup_ratio is None or max_steps is not None, "If there is a ratio, there should be a total steps"
# It is necessary to assign all attributes *before* __init__,
# as class is wrapped by an inner class.
self.max_steps = max_steps
if warmup_steps is not None:
self.warmup_steps = warmup_steps
elif warmup_ratio is not None:
self.warmup_steps = int(warmup_ratio * max_steps)
else:
self.warmup_steps = 0
self.min_lr = min_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed by the scheduler, please use `get_last_lr()`.", UserWarning
)
step = self.last_epoch
if step <= self.warmup_steps and self.warmup_steps > 0:
return self._get_warmup_lr(step)
if (self.max_steps is not None) and (step > self.max_steps):
return [self.min_lr for _ in self.base_lrs]
return self._get_lr(step)
def _get_warmup_lr(self, step):
lr_val = (step + 1) / (self.warmup_steps + 1)
return [initial_lr * lr_val for initial_lr in self.base_lrs]
def _get_lr(self, step):
"""Simple const lr policy"""
return self.base_lrs
class SquareRootConstantPolicy(_LRScheduler):
"""Adds warmup kwargs and warmup logic to lr policy.
All arguments should be passed as kwargs for clarity,
Args:
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
"""
def __init__(
self, optimizer, *, constant_steps=None, constant_ratio=None, max_steps=None, min_lr=0.0, last_epoch=-1
):
assert not (
constant_steps is not None and constant_ratio is not None
), "Either use particular number of step or ratio"
assert constant_ratio is None or max_steps is not None, "If there is a ratio, there should be a total steps"
# It is necessary to assign all attributes *before* __init__,
# as class is wrapped by an inner class.
self.max_steps = max_steps
if constant_steps is not None:
self.constant_steps = constant_steps
elif constant_ratio is not None:
self.constant_steps = int(constant_ratio * max_steps)
else:
self.constant_steps = 0
self.constant_lr = 1 / (constant_steps ** 0.5)
self.min_lr = min_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed by the scheduler, please use `get_last_lr()`.", UserWarning
)
step = self.last_epoch
if step <= self.constant_steps:
return [self.constant_lr for _ in self.base_lrs]
if step > self.max_steps:
return [self.min_lr for _ in self.base_lrs]
return self._get_lr(step)
def _get_lr(self, step):
"""Simple const lr policy"""
return self.base_lrs
class WarmupHoldPolicy(WarmupPolicy):
"""Variant of WarmupPolicy which maintains high learning rate for a defined number of steps.
All arguments should be passed as kwargs for clarity,
Args:
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
hold_steps: Number of training steps to hold the learning rate after warm up
hold_ratio: Ratio of hold steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
"""
def __init__(
self,
optimizer,
*,
warmup_steps=None,
warmup_ratio=None,
hold_steps=None,
hold_ratio=None,
max_steps=None,
min_lr=0.0,
last_epoch=-1,
):
assert not (hold_steps is not None and hold_ratio is not None), "Either use particular number of step or ratio"
assert hold_ratio is None or max_steps is not None, "If there is a ratio, there should be a total steps"
self.min_lr = min_lr
self._last_warmup_lr = 0.0
# Necessary to duplicate as class attributes are hidden in inner class
self.max_steps = max_steps
if warmup_steps is not None:
self.warmup_steps = warmup_steps
elif warmup_ratio is not None:
self.warmup_steps = int(warmup_ratio * max_steps)
else:
self.warmup_steps = 0
if hold_steps is not None:
self.hold_steps = hold_steps + self.warmup_steps
elif hold_ratio is not None:
self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
else:
self.hold_steps = 0
super().__init__(
optimizer,
warmup_steps=warmup_steps,
warmup_ratio=warmup_ratio,
max_steps=max_steps,
last_epoch=last_epoch,
min_lr=min_lr,
)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning
)
step = self.last_epoch
# Warmup phase
if step <= self.warmup_steps and self.warmup_steps > 0:
return self._get_warmup_lr(step)
# Hold phase
if (step >= self.warmup_steps) and (step < self.hold_steps):
return self.base_lrs
if step > self.max_steps:
return [self.min_lr for _ in self.base_lrs]
return self._get_lr(step)
class WarmupAnnealHoldPolicy(_LRScheduler):
"""Adds warmup kwargs and warmup logic to lr policy.
All arguments should be passed as kwargs for clarity,
Args:
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
min_lr: Minimum lr to hold the learning rate after decay at.
constant_steps: Number of steps to keep lr constant at.
constant_ratio: Ratio of steps to keep lr constant.
"""
def __init__(
self,
optimizer,
*,
warmup_steps=None,
warmup_ratio=None,
constant_steps=None,
constant_ratio=None,
max_steps=None,
min_lr=0.0,
last_epoch=-1,
):
assert not (
warmup_steps is not None and warmup_ratio is not None
), "Either use particular number of step or ratio"
assert not (
constant_steps is not None and constant_ratio is not None
), "Either use constant_steps or constant_ratio"
assert warmup_ratio is None or max_steps is not None, "If there is a ratio, there should be a total steps"
# It is necessary to assign all attributes *before* __init__,
# as class is wrapped by an inner class.
self.max_steps = max_steps
if warmup_steps is not None:
self.warmup_steps = warmup_steps
elif warmup_ratio is not None:
self.warmup_steps = int(warmup_ratio * max_steps)
else:
self.warmup_steps = 0
if constant_steps is not None:
self.constant_steps = constant_steps
elif constant_ratio is not None:
self.constant_steps = int(constant_ratio * max_steps)
else:
self.constant_steps = 0
self.decay_steps = max_steps - (self.constant_steps + self.warmup_steps)
self.min_lr = min_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed by the scheduler, please use `get_last_lr()`.", UserWarning
)
step = self.last_epoch
# Warmup steps
if self.warmup_steps > 0 and step <= self.warmup_steps:
return self._get_warmup_lr(step)
# Constant steps after warmup and decay
if self.constant_steps > 0 and (self.warmup_steps + self.decay_steps) < step <= self.max_steps:
return self._get_constant_lr(step)
# Min lr after max steps of updates
if step > self.max_steps:
return [self.min_lr for _ in self.base_lrs]
return self._get_lr(step)
def _get_warmup_lr(self, step):
lr_val = (step + 1) / (self.warmup_steps + 1)
return [initial_lr * lr_val for initial_lr in self.base_lrs]
def _get_constant_lr(self, step):
return [self.min_lr for _ in self.base_lrs]
def _get_lr(self, step):
"""Simple const lr policy"""
return self.base_lrs
def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
mult = ((max_steps - step) / max_steps) ** 0.5
out_lr = initial_lr * mult
out_lr = max(out_lr, min_lr)
return out_lr
def _square_annealing(initial_lr, step, max_steps, min_lr):
mult = ((max_steps - step) / max_steps) ** 2
out_lr = initial_lr * mult
out_lr = max(out_lr, min_lr)
return out_lr
def _cosine_annealing(initial_lr, step, max_steps, min_lr):
mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
out_lr = (initial_lr - min_lr) * mult + min_lr
return out_lr
def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step, decay_steps, min_lr):
assert max_lr > min_lr
# Use linear warmup for the initial part.
if warmup_steps > 0 and step <= warmup_steps:
return max_lr * float(step) / float(warmup_steps)
# For any steps larger than `decay_steps`, use `min_lr`.
if step > warmup_steps + decay_steps:
return min_lr
# If we are done with the warmup period, use the decay style.
num_steps_ = step - warmup_steps
decay_steps_ = decay_steps
decay_ratio = float(num_steps_) / float(decay_steps_)
assert decay_ratio >= 0.0
assert decay_ratio <= 1.0
delta_lr = max_lr - min_lr
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
return min_lr + coeff * delta_lr
def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
if cycle:
multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
decay_steps *= multiplier
else:
step = min(step, decay_steps)
p = step / decay_steps
lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
lr += min_lr
return lr
def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps, decay_rate, min_lr):
# hold_steps = total number of steps to hold the LR, not the warmup + hold steps.
T_warmup_decay = max(1, warmup_steps ** decay_rate)
T_hold_decay = max(1, (step - hold_steps) ** decay_rate)
lr = (initial_lr * T_warmup_decay) / T_hold_decay
lr = max(lr, min_lr)
return lr
class SquareAnnealing(WarmupPolicy):
def __init__(self, optimizer, *, max_steps, min_lr=1e-5, last_epoch=-1, **kwargs):
super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs)
def _get_lr(self, step):
new_lrs = [
_square_annealing(
initial_lr=initial_lr,
step=step - self.warmup_steps,
max_steps=self.max_steps - self.warmup_steps,
min_lr=self.min_lr,
)
for initial_lr in self.base_lrs
]
return new_lrs
class SquareRootAnnealing(WarmupPolicy):
def __init__(self, optimizer, *, max_steps, min_lr=0, last_epoch=-1, **kwargs):
super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs)
def _get_lr(self, step):
new_lrs = [
_squareroot_annealing(initial_lr=initial_lr, step=step, max_steps=self.max_steps, min_lr=self.min_lr)
for initial_lr in self.base_lrs
]
return new_lrs
class CosineAnnealing(WarmupAnnealHoldPolicy):
def __init__(self, optimizer, *, max_steps, min_lr=0, last_epoch=-1, **kwargs):
super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs)
def _get_lr(self, step):
for initial_lr in self.base_lrs:
if initial_lr < self.min_lr:
raise ValueError(
f"{self} received an initial learning rate that was lower than the minimum learning rate."
)
if self.constant_steps is None or self.constant_steps == 0:
new_lrs = [
_cosine_annealing(
initial_lr=initial_lr,
step=step - self.warmup_steps,
max_steps=self.max_steps - self.warmup_steps,
min_lr=self.min_lr,
)
for initial_lr in self.base_lrs
]
else:
new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
return new_lrs
def _get_warmup_lr(self, step):
if self.constant_steps is None or self.constant_steps == 0:
return super()._get_warmup_lr(step)
else:
# Use linear warmup for the initial part.
return self._get_linear_warmup_with_cosine_annealing_lr(step)
def _get_constant_lr(self, step):
# Only called when `constant_steps` > 0.
return self._get_linear_warmup_with_cosine_annealing_lr(step)
def _get_linear_warmup_with_cosine_annealing_lr(self, step):
# Cosine Schedule for Megatron LM, slightly different warmup schedule + constant LR at the end.
new_lrs = [
_linear_warmup_with_cosine_annealing(
max_lr=self.base_lrs[0],
warmup_steps=self.warmup_steps,
step=step,
decay_steps=self.decay_steps,
min_lr=self.min_lr,
)
for _ in self.base_lrs
]
return new_lrs
class NoamAnnealing(_LRScheduler):
def __init__(
self, optimizer, *, d_model, warmup_steps=None, warmup_ratio=None, max_steps=None, min_lr=0.0, last_epoch=-1
):
self._normalize = d_model ** (-0.5)
assert not (
warmup_steps is not None and warmup_ratio is not None
), "Either use particular number of step or ratio"
assert warmup_ratio is None or max_steps is not None, "If there is a ratio, there should be a total steps"
# It is necessary to assign all attributes *before* __init__,
# as class is wrapped by an inner class.
self.max_steps = max_steps
if warmup_steps is not None:
self.warmup_steps = warmup_steps
elif warmup_ratio is not None:
self.warmup_steps = int(warmup_ratio * max_steps)
else:
self.warmup_steps = 0
self.min_lr = min_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed by the scheduler, please use `get_last_lr()`.", UserWarning
)
step = max(1, self.last_epoch)
for initial_lr in self.base_lrs:
if initial_lr < self.min_lr:
raise ValueError(
f"{self} received an initial learning rate that was lower than the minimum learning rate."
)
new_lrs = [self._noam_annealing(initial_lr=initial_lr, step=step) for initial_lr in self.base_lrs]
return new_lrs
def _noam_annealing(self, initial_lr, step):
if self.warmup_steps > 0:
mult = self._normalize * min(step ** (-0.5), step * (self.warmup_steps ** (-1.5)))
else:
mult = self._normalize * step ** (-0.5)
out_lr = initial_lr * mult
if step > self.warmup_steps:
out_lr = max(out_lr, self.min_lr)
return out_lr
class NoamHoldAnnealing(WarmupHoldPolicy):
def __init__(self, optimizer, *, max_steps, decay_rate=0.5, min_lr=0.0, last_epoch=-1, **kwargs):
"""
Implementation of the Noam Hold Annealing policy from the SqueezeFormer paper.
Unlike NoamAnnealing, the peak learning rate can be explicitly set for this scheduler.
The schedule first performs linear warmup, then holds the peak LR, then decays with some schedule for
the remainder of the steps. Therefore the min-lr is still dependent on the hyper parameters selected.
It's schedule is determined by three factors-
Warmup Steps: Initial stage, where linear warmup occurs uptil the peak LR is reached. Unlike NoamAnnealing,
the peak LR is explicitly stated here instead of a scaling factor.
Hold Steps: Intermediate stage, where the peak LR is maintained for some number of steps. In this region,
the high peak LR allows the model to converge faster if training is stable. However the high LR
may also cause instability during training. Should usually be a significant fraction of training
steps (around 30-40% of the entire training steps).
Decay Steps: Final stage, where the LR rapidly decays with some scaling rate (set by decay rate).
To attain Noam decay, use 0.5, for Squeezeformer recommended decay, use 1.0. The fast decay after
prolonged high LR during hold phase allows for rapid convergence.
References:
- [Squeezeformer: An Efficient Transformer for Automatic Speech Recognition](https://arxiv.org/abs/2206.00888)
Args:
optimizer: Pytorch compatible Optimizer object.
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
hold_steps: Number of training steps to hold the learning rate after warm up
hold_ratio: Ratio of hold steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
decay_rate: Float value describing the polynomial decay after the hold period. Default value
of 0.5 corresponds to Noam decay.
min_lr: Minimum learning rate.
"""
self.decay_rate = decay_rate
super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs)
def _get_lr(self, step):
if self.warmup_steps is None or self.warmup_steps == 0:
raise ValueError("Noam scheduler cannot be used without warmup steps")
if self.hold_steps > 0:
hold_steps = self.hold_steps - self.warmup_steps
else:
hold_steps = 0
new_lrs = [
_noam_hold_annealing(
initial_lr,
step=step,
warmup_steps=self.warmup_steps,
hold_steps=hold_steps,
decay_rate=self.decay_rate,
min_lr=self.min_lr,
)
for initial_lr in self.base_lrs
]
return new_lrs
class WarmupAnnealing(WarmupPolicy):
def __init__(self, optimizer, *, max_steps, last_epoch=-1, min_lr=0.0, **kwargs):
super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs)
def _get_lr(self, step):
delta_lr = self.base_lrs[0] - self.min_lr
mult = (step - self.warmup_steps) / (self.max_steps - self.warmup_steps)
out_lr = [self.min_lr + (1 - mult) * delta_lr for _ in self.base_lrs]
return out_lr
class InverseSquareRootAnnealing(WarmupPolicy):
def __init__(self, optimizer, *, max_steps, last_epoch=-1, min_lr=0.0, **kwargs):
super().__init__(optimizer=optimizer, max_steps=max_steps, **kwargs, last_epoch=last_epoch, min_lr=min_lr)
def _get_lr(self, step):
denom = ((step + 1) / (self.warmup_steps + 1)) ** 0.5
out_lr = [initial_lr / denom for initial_lr in self.base_lrs]
return out_lr
class T5InverseSquareRootAnnealing(SquareRootConstantPolicy):
def __init__(self, optimizer, *, max_steps, last_epoch=-1, min_lr=0.0, **kwargs):
super().__init__(optimizer=optimizer, max_steps=max_steps, **kwargs, last_epoch=last_epoch, min_lr=min_lr)
def _get_lr(self, step):
return [1 / (step ** 0.5) for _ in self.base_lrs]
class PolynomialDecayAnnealing(WarmupPolicy):
def __init__(self, optimizer, *, max_steps, min_lr=0.0, power=1.0, cycle=False, last_epoch=-1, **kwargs):
self.power = power
self.cycle = cycle
super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs)
def _get_lr(self, step):
new_lrs = [
_poly_decay(
initial_lr,
step=step - self.warmup_steps,
decay_steps=self.max_steps - self.warmup_steps,
power=self.power,
min_lr=self.min_lr,
cycle=self.cycle,
)
for initial_lr in self.base_lrs
]
return new_lrs
class PolynomialHoldDecayAnnealing(WarmupHoldPolicy):
def __init__(self, optimizer, *, max_steps, min_lr=0.0, power=1.0, cycle=False, last_epoch=-1, **kwargs):
self.power = power
self.cycle = cycle
super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs)
def _get_lr(self, step):
new_lrs = [
_poly_decay(
initial_lr,
step=step - self.hold_steps,
decay_steps=self.max_steps - max(self.warmup_steps, self.hold_steps),
power=self.power,
min_lr=self.min_lr,
cycle=self.cycle,
)
for initial_lr in self.base_lrs
]
return new_lrs
def register_scheduler(name: str, scheduler: _LRScheduler, scheduler_params: SchedulerParams):
"""
Checks if the scheduler name exists in the registry, and if it doesnt, adds it.
This allows custom schedulers to be added and called by name during instantiation.
Args:
name: Name of the optimizer. Will be used as key to retrieve the optimizer.
scheduler: Scheduler class (inherits from _LRScheduler)
scheduler_params: The parameters as a dataclass of the scheduler
"""
if name in AVAILABLE_SCHEDULERS:
raise ValueError(f"Cannot override pre-existing schedulers. Conflicting scheduler name = {name}")
AVAILABLE_SCHEDULERS[name] = scheduler
sched_name = "{}_params".format(scheduler.__name__)
register_scheduler_params(name=sched_name, scheduler_params=scheduler_params)
def get_scheduler(name: str, **kwargs: Optional[Dict[str, Any]]) -> _LRScheduler:
"""
Convenience method to obtain an _LRScheduler class and partially instantiate it with optimizer kwargs.
Args:
name: Name of the scheduler in the registry.
kwargs: Optional kwargs of the scheduler used during instantiation.
Returns:
a partially instantiated _LRScheduler
"""
if name not in AVAILABLE_SCHEDULERS:
raise ValueError(
f"Cannot resolve scheduler{name}'. Available optimizers are : " f"{AVAILABLE_SCHEDULERS.keys()}"
)
scheduler_cls = AVAILABLE_SCHEDULERS[name]
# Pop 'max_steps' if it's not required by the scheduler
if 'max_steps' in kwargs and 'max_steps' not in inspect.signature(scheduler_cls).parameters:
kwargs.pop('max_steps')
scheduler = partial(scheduler_cls, **kwargs)
return scheduler
def prepare_lr_scheduler(
optimizer: optim.Optimizer,
scheduler_config: Union[Dict[str, Any], DictConfig],
train_dataloader: Optional[dataloader.DataLoader] = None,
) -> Optional[Dict[str, Any]]:
"""
Constructs an LR Scheduler (optionally) for a given optimizer, based on a config with the following schema
optim:
name: <name of optimizer>
lr: <maximal learning rate>
# <additional optimizer arguments>
args:
name: auto # special keyword, resolves to correct optimizer config for given optimizer name
# cls: nemo.core.config.optimizers.NovogradParams # explicit instantiation by class path
params: # optional override parameters for the optimizer config
betas: [0.8, 0.5]
weight_decay: 0.001
# scheduler setup
sched:
name: <name of scheduler>
iters_per_batch: null # computed at runtime; mandatory to have
max_steps: -1 # computed at runtime or explicitly set here; mandatory to have
# pytorch lightning args <mandatory>
monitor: val_loss
reduce_on_plateau: false
# <scheduler config override>
args:
name: auto # special keyword, resolves to correct optimizer config for given optimizer name
# cls: nemo.core.config.schedulers.CosineAnnealingParams # explicit instantiation by class path
params: # optional override parameters for the optimizer config
warmup_steps: null
warmup_ratio: null
min_lr: 0.0
last_epoch: -1
Args:
optimizer: An instantiated Optimizer.
scheduler_config: A dictionary / config dict which follows the above schema.
train_dataloader: Optional requirement, must be passed if "iters_per_batch" is defined
instead of "max_steps". Used to compute effective "max_steps".
Returns:
A dictionary containing the LR Scheduler implementation if the config was successfully parsed
along with other parameters required by Pytorch Lightning, otherwise None.
"""
if scheduler_config is not None:
scheduler_config = maybe_update_config_version(scheduler_config)
# Build nested dictionary for convenience out of structured objects
if isinstance(scheduler_config, DictConfig):
scheduler_config = OmegaConf.to_container(scheduler_config, resolve=True)
elif dataclasses.is_dataclass(scheduler_config):
# Recursively transform data classes to basic dictionaries
scheduler_config = OmegaConf.create(scheduler_config)
scheduler_config = OmegaConf.to_container(scheduler_config, resolve=True)
# Test to see if config follows above schema
interval = 'step'
if scheduler_config is not None:
if 'args' in scheduler_config:
scheduler_args = scheduler_config.pop('args')
else:
scheduler_args = copy.deepcopy(scheduler_config)
# Remove extra parameters from scheduler_args nest
# Assume all other parameters are to be passed into scheduler constructor
scheduler_args.pop('name', None)
scheduler_args.pop('t_max_epochs', None)
scheduler_args.pop('t_accumulate_grad_batches', None)
scheduler_args.pop('t_limit_train_batches', None)
scheduler_args.pop('t_num_workers', None)
scheduler_args.pop('monitor', None)
scheduler_args.pop('reduce_on_plateau', None)
if 'name' in scheduler_config and scheduler_config['name'] in EPOCH_SCHEDULERS:
interval = 'epoch'
else:
# Return gracefully in case `sched` was not supplied; inform user
logging.info('Scheduler not initialized as no `sched` config supplied to setup_optimizer()')
return None
# Try instantiation of scheduler params from config class path
if '_target_' in scheduler_args:
scheduler_args_cfg = OmegaConf.create(scheduler_args)
scheduler_conf = hydra.utils.instantiate(scheduler_args_cfg)
scheduler_args = vars(scheduler_conf)
# Get name of the scheduler
scheduler_name = scheduler_conf.__class__.__name__
if 'Params' in scheduler_name:
scheduler_name = scheduler_name.replace('Params', '')
else:
# Class path instantiation failed; try resolving "name" component
# Get name of the scheduler
if 'name' in scheduler_config:
scheduler_name = scheduler_config['name']
else:
logging.warning(
"Could not resolve classpath for Scheduler Config, and `name` "
"was not provided either. \n"
"Scheduler cannot be instantiated !"
)
return None
# If class path was not provided, perhaps `name` is provided for resolution
if 'name' in scheduler_args:
# If `auto` is passed as name for resolution of optimizer name,
# then lookup optimizer name and resolve its parameter config
if scheduler_args['name'] == 'auto':
scheduler_params_name = "{}Params".format(scheduler_name)
else:
scheduler_params_name = scheduler_args['name']
# Get override arguments provided in the config yaml file / Dict Config
scheduler_params_override = scheduler_args.get('params', {})
# If params is itself a dict config object provided explicitly in Dict Config
# Resolve to dictionary for convenience
if isinstance(scheduler_params_override, DictConfig):
scheduler_params_override = OmegaConf.to_container(scheduler_params_override, resolve=True)
# Get and instantiate the Config dataclass for this scheduler
scheduler_params_cls = get_scheduler_config(scheduler_params_name, **scheduler_params_override)
scheduler_params = scheduler_params_cls() # instantiate the parameters object
scheduler_args = vars(scheduler_params) # extract just the dictionary from the Config object
else:
# assume the input dictionary is schedular args (from dataclasses / omegaconf)
pass
# Extract value to monitor in losses, if provided.
if 'monitor' in scheduler_config:
monitor = scheduler_config.get('monitor')
else:
# Default to train loss
monitor = 'loss'
# Store exact max_steps if it is provided
if 'max_steps' in scheduler_config and scheduler_config['max_steps'] is not None:
max_steps = scheduler_config['max_steps']
elif 't_max_epochs' in scheduler_config:
# Compute effective max_steps if t_max_epochs is provided
if train_dataloader is None:
logging.warning(
'As `t_max_epochs` is provided/computed, it is required to pass the train dataloader in order\n'
'to compute effective maximum number of steps.\n'
'Scheduler will not be instantiated !'
)
return None
# Raise exception if neither `max_steps` nor `t_max_epochs` is provided
if scheduler_config.get('t_max_epochs', None) is None:
logging.warning(
"`t_max_epochs` cannot be None when `max_steps` is not not provided.\n"
"This can occur when `train dataloader` is not available to correctly "
"prepare the scheduler.\n"
"Scheduler will not be instantiated !"
)
return None
# Get iters_per_batch
max_epochs = scheduler_config.get('t_max_epochs')
accumulate_grad_batches = scheduler_config.get('t_accumulate_grad_batches')
limit_train_batches = scheduler_config.get('t_limit_train_batches')
num_workers = scheduler_config.get('t_num_workers')
# Compute effective num max_steps
num_samples = len(train_dataloader.dataset)
# TODO: not sure if this will be the correct LR schedule for Megatron
# we may need to override ModelPT setup_optimization
if train_dataloader.batch_size is not None:
batch_size = train_dataloader.batch_size
elif hasattr(train_dataloader, 'batch_sampler') and train_dataloader.batch_sampler is not None:
if train_dataloader.batch_sampler.micro_batch_size is not None:
batch_size = train_dataloader.batch_sampler.micro_batch_size
else:
raise ValueError(f'Could not find batch_size from batch_sampler: {train_dataloader.batch_sampler}')
else:
raise ValueError(f'Could not find batch_size from train_dataloader: {train_dataloader}')
drop_last = train_dataloader.drop_last
max_steps = compute_max_steps(
max_epochs=max_epochs,
accumulate_grad_batches=accumulate_grad_batches,
limit_train_batches=limit_train_batches,
num_workers=num_workers,
num_samples=num_samples,
batch_size=batch_size,
drop_last=drop_last,
)
else:
logging.warning(
"Neither `max_steps` nor `iters_per_batch` were provided to `optim.sched`, "
"cannot compute effective `max_steps` !\n"
"Scheduler will not be instantiated !"
)
return None
# Inject max_steps (effective or provided) into the scheduler config
scheduler_args['max_steps'] = max_steps
# Get the scheduler class from the config
scheduler_cls = get_scheduler(scheduler_name, **scheduler_args)
# Pop 'max_steps' if it's not required by the scheduler
if 'max_steps' not in inspect.signature(scheduler_cls).parameters:
scheduler_args.pop('max_steps')
# Instantiate the LR schedule
schedule = scheduler_cls(optimizer, **scheduler_args)
logging.info(
'Scheduler "%s" \nwill be used during training (effective maximum steps = %d) - \nParameters : \n(%s)',
str(schedule),
max_steps,
OmegaConf.to_yaml(OmegaConf.create(scheduler_args)),
)
# Wrap the schedule in PTL arguments to perform stepwise computation
# Rather than epoch level computation
if isinstance(schedule, optim.lr_scheduler.ReduceLROnPlateau):
reduce_lr_on_plateau = True
else:
reduce_lr_on_plateau = False
schedule_dict = {
'scheduler': schedule,
'interval': interval,
'frequency': 1,
'monitor': monitor,
'reduce_on_plateau': reduce_lr_on_plateau,
}
return schedule_dict
def compute_max_steps(
max_epochs, accumulate_grad_batches, limit_train_batches, num_workers, num_samples, batch_size, drop_last
):
_round = math.floor if drop_last else math.ceil
sampler_num_samples = math.ceil(num_samples / max(1, num_workers))
if drop_last and num_workers > 1:
logging.warning(
"Please note that drop_last is broken in pytorch 1.6.0. We will fix when pytorch 1.7.0 is released"
)
# TODO: Master version, not in pytorch 1.6.0
# sampler_num_samples = math.ceil((num_samples - num_workers)/ num_workers)
steps_per_epoch = _round(sampler_num_samples / batch_size)
if isinstance(limit_train_batches, int) or limit_train_batches == 0.0:
steps_per_epoch = min(steps_per_epoch, int(limit_train_batches))
elif steps_per_epoch != float('inf'):
# limit_train_batches is a percentage of batches per epoch
steps_per_epoch = int(steps_per_epoch * limit_train_batches)
return math.ceil(steps_per_epoch / accumulate_grad_batches) * max_epochs
AVAILABLE_SCHEDULERS = {
'WarmupPolicy': WarmupPolicy,
'WarmupHoldPolicy': WarmupHoldPolicy,
'SquareAnnealing': SquareAnnealing,
'CosineAnnealing': CosineAnnealing,
'NoamAnnealing': NoamAnnealing,
'NoamHoldAnnealing': NoamHoldAnnealing,
'WarmupAnnealing': WarmupAnnealing,
'InverseSquareRootAnnealing': InverseSquareRootAnnealing,
'T5InverseSquareRootAnnealing': T5InverseSquareRootAnnealing,
'SquareRootAnnealing': SquareRootAnnealing,
'PolynomialDecayAnnealing': PolynomialDecayAnnealing,
'PolynomialHoldDecayAnnealing': PolynomialHoldDecayAnnealing,
'StepLR': pt_scheduler.StepLR,
'ExponentialLR': pt_scheduler.ExponentialLR,
'ReduceLROnPlateau': pt_scheduler.ReduceLROnPlateau,
'CyclicLR': pt_scheduler.CyclicLR,
}
EPOCH_SCHEDULERS = {
'ReduceLROnPlateau': pt_scheduler.ReduceLROnPlateau,
}
|