File size: 8,535 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, Optional


@dataclass
class SchedulerParams:
    """
    Base configuration for all schedulers.
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    last_epoch: int = -1


@dataclass
class SquareRootConstantSchedulerParams(SchedulerParams):
    """
    Base configuration for all schedulers.
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    constant_steps: Optional[float] = None
    constant_ratio: Optional[float] = None


@dataclass
class WarmupSchedulerParams(SchedulerParams):
    """
    Base configuration for all schedulers.
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    max_steps: int = 0
    warmup_steps: Optional[float] = None
    warmup_ratio: Optional[float] = None


@dataclass
class WarmupHoldSchedulerParams(WarmupSchedulerParams):
    """
    Base configuration for all schedulers.
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    hold_steps: Optional[float] = None
    hold_ratio: Optional[float] = None
    min_lr: float = 0.0


@dataclass
class WarmupAnnealingHoldSchedulerParams(WarmupSchedulerParams):
    """
    Base configuration for all schedulers.
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    constant_steps: Optional[float] = None
    constant_ratio: Optional[float] = None
    min_lr: float = 0.0


@dataclass
class SquareAnnealingParams(WarmupSchedulerParams):
    """
    Square Annealing parameter config
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    min_lr: float = 1e-5


@dataclass
class SquareRootAnnealingParams(WarmupSchedulerParams):
    """
    Square Root Annealing parameter config
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    min_lr: float = 0.0


@dataclass
class CosineAnnealingParams(WarmupAnnealingHoldSchedulerParams):
    """
    Cosine Annealing parameter config
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    min_lr: float = 0.0


@dataclass
class NoamAnnealingParams(WarmupSchedulerParams):
    """
    Cosine Annealing parameter config
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    min_lr: float = 0.0


@dataclass
class NoamHoldAnnealingParams(WarmupHoldSchedulerParams):
    """
    Polynomial Hold Decay Annealing parameter config
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    decay_rate: float = 0.5


@dataclass
class WarmupAnnealingParams(WarmupSchedulerParams):
    """
    Warmup Annealing parameter config
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    warmup_ratio: Optional[float] = None


@dataclass
class InverseSquareRootAnnealingParams(WarmupSchedulerParams):
    """
    Inverse Square Root Annealing parameter config
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """


@dataclass
class PolynomialDecayAnnealingParams(WarmupSchedulerParams):
    """
    Polynomial Decay Annealing parameter config
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    power: float = 1.0
    cycle: bool = False


@dataclass
class PolynomialHoldDecayAnnealingParams(WarmupSchedulerParams):
    """
    Polynomial Hold Decay Annealing parameter config
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    power: float = 1.0
    cycle: bool = False


"""
Pytorch Optimizers
"""


@dataclass
class StepLRParams(SchedulerParams):
    """
    Config for StepLR.
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    step_size: float = 0.1
    gamma: float = 0.1


@dataclass
class ExponentialLRParams(SchedulerParams):
    """
    Config for ExponentialLR.
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    gamma: float = 0.9


@dataclass
class ReduceLROnPlateauParams:
    """
    Config for ReduceLROnPlateau.
    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    mode: str = 'min'
    factor: float = 0.1
    patience: int = 10
    verbose: bool = False
    threshold: float = 1e-4
    threshold_mode: str = 'rel'
    cooldown: int = 0
    min_lr: float = 0
    eps: float = 1e-8


@dataclass
class CyclicLRParams(SchedulerParams):
    """
    Config for CyclicLR.
    NOTE:
    # `scale_fn` is not supported

    It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name).
    """

    base_lr: float = 0.001
    max_lr: float = 0.1
    step_size_up: int = 2000
    step_size_down: Optional[int] = None
    mode: str = 'triangular'
    gamma: float = 1.0
    scale_mode: str = 'cycle'
    # scale_fn is not supported
    cycle_momentum: bool = True
    base_momentum: float = 0.8
    max_momentum: float = 0.9


def register_scheduler_params(name: str, scheduler_params: SchedulerParams):
    """
    Checks if the schduler config name exists in the registry, and if it doesnt, adds it.

    This allows custom schedulers to be added and called by name during instantiation.

    Args:
        name: Name of the optimizer. Will be used as key to retrieve the optimizer.
        scheduler_params: SchedulerParams class
    """
    if name in AVAILABLE_SCHEDULER_PARAMS:
        raise ValueError(f"Cannot override pre-existing optimizers. Conflicting optimizer name = {name}")

    AVAILABLE_SCHEDULER_PARAMS[name] = scheduler_params


def get_scheduler_config(name: str, **kwargs: Optional[Dict[str, Any]]) -> SchedulerParams:
    """
    Convenience method to obtain a SchedulerParams class and partially instantiate it with optimizer kwargs.

    Args:
        name: Name of the SchedulerParams in the registry.
        kwargs: Optional kwargs of the optimizer used during instantiation.

    Returns:
        a partially instantiated SchedulerParams
    """
    if name not in AVAILABLE_SCHEDULER_PARAMS:
        raise ValueError(
            f"Cannot resolve scheduler parameters '{name}'. Available scheduler parameters are : "
            f"{AVAILABLE_SCHEDULER_PARAMS.keys()}"
        )

    scheduler_params = AVAILABLE_SCHEDULER_PARAMS[name]
    scheduler_params = partial(scheduler_params, **kwargs)
    return scheduler_params


AVAILABLE_SCHEDULER_PARAMS = {
    'SchedulerParams': SchedulerParams,
    'WarmupPolicyParams': WarmupSchedulerParams,
    'WarmupHoldPolicyParams': WarmupHoldSchedulerParams,
    'WarmupAnnealingHoldSchedulerParams': WarmupAnnealingHoldSchedulerParams,
    'SquareAnnealingParams': SquareAnnealingParams,
    'SquareRootAnnealingParams': SquareRootAnnealingParams,
    'InverseSquareRootAnnealingParams': InverseSquareRootAnnealingParams,
    'SquareRootConstantSchedulerParams': SquareRootConstantSchedulerParams,
    'CosineAnnealingParams': CosineAnnealingParams,
    'NoamAnnealingParams': NoamAnnealingParams,
    'NoamHoldAnnealingParams': NoamHoldAnnealingParams,
    'WarmupAnnealingParams': WarmupAnnealingParams,
    'PolynomialDecayAnnealingParams': PolynomialDecayAnnealingParams,
    'PolynomialHoldDecayAnnealingParams': PolynomialHoldDecayAnnealingParams,
    'ReduceLROnPlateauParams': ReduceLROnPlateauParams,
}