File size: 1,893 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from omegaconf import DictConfig, OmegaConf
from nemo.collections.nlp.models import ZeroShotIntentModel
from nemo.core.config import hydra_runner
from nemo.utils import logging
@hydra_runner(config_path="conf", config_name="zero_shot_intent_config")
def main(cfg: DictConfig) -> None:
logging.info(f'Config Params:\n {OmegaConf.to_yaml(cfg)}')
# initialize the model using the config file
if cfg.pretrained_model and os.path.exists(cfg.pretrained_model):
model = ZeroShotIntentModel.restore_from(cfg.pretrained_model, strict=False)
else:
raise ValueError('Provide path to the pre-trained .nemo checkpoint')
# predicting an intent of a query
queries = [
"I'd like a veggie burger and fries",
"Turn off the lights in the living room",
]
candidate_labels = ['Food order', 'Play music', 'Request for directions', 'Change lighting', 'Calendar query']
predictions = model.predict(queries, candidate_labels, batch_size=4, multi_label=True)
logging.info('The prediction results of some sample queries with the trained model:')
for query in predictions:
logging.info(json.dumps(query, indent=4))
logging.info("Inference finished!")
if __name__ == '__main__':
main()
|