File size: 7,650 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import pytorch_lightning as pl
import torch
from omegaconf import DictConfig, OmegaConf

from nemo.collections.nlp.models import PunctuationCapitalizationModel
from nemo.collections.nlp.models.token_classification.punctuation_capitalization_config import (
    PunctuationCapitalizationConfig,
)
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.exp_manager import exp_manager


"""
This script show how to train a Punctuation and Capitalization Model.
More details on the task and data format could be found in tutorials/nlp/Punctuation_and_Capitalization.ipynb

*** Setting the configs ***

The model and the PT trainer are defined in a config file which declares multiple important sections.
The most important ones are:
    model: All arguments that are related to the Model - language model, tokenizer, token classifier, optimizer,
            schedulers, and datasets/data loaders.
    trainer: Any argument to be passed to PyTorch Lightning including number of epochs, number of GPUs,
            precision level, etc.
This script uses the `/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml` config file
by default. You may update the config file from the file directly. 
The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'.

Additional default parameters could be found in PunctuationCapitalizationDataConfigBase from 
/nemo/collections/nlp/data/token_classification/punctuation_capitalization_dataset.py, 
use `+` to modify their values via command line, e.g.: `+model.train_ds.num_workers=2`

For more details about the config files and different ways of model restoration, see tutorials/00_NeMo_Primer.ipynb

*** Model training ***

To run this script and train the model from scratch, use:
    python punctuation_capitalization_train_evaluate.py \
        model.train_ds.ds_item=<PATH/TO/TRAIN/DATA> \
        model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \
        model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \
        model.validation_ds.ds_item=<PATH/TO/DEV/DATA> \
        model.validation_ds.text_file=<NAME_OF_DEV_INPUT_TEXT_FILE> \
        model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \
        ~model.test_ds

To use one of the pretrained versions of the model and finetune it, run:
    python punctuation_capitalization_train_evaluate.py \
        pretrained_model=punctuation_en_bert \
        model.train_ds.ds_item=<PATH/TO/TRAIN/DATA> \
        model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \
        model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \
        model.validation_ds.ds_item=<PATH/TO/DEV/DATA> \
        model.validation_ds.text_file=<NAME_OF_DEV_INPUT_TEXT_FILE> \
        model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \
        ~model.test_ds
    
    pretrained_model   - pretrained PunctuationCapitalization model from list_available_models() or 
        path to a .nemo file, for example: punctuation_en_bert or model.nemo

If you wish to perform testing after training set `do_testing` to `true:
    python punctuation_capitalization_train_evaluate.py \
        +do_testing=true \
        pretrained_model=punctuation_en_bert \
        model.train_ds.ds_item=<PATH/TO/TRAIN/DATA> \
        model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \
        model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \
        model.validation_ds.ds_item=<PATH/TO/DEV/DATA> \
        model.validation_ds.text_file=<NAME_OF_DEV_INPUT_TEXT_FILE> \
        model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \
        model.test_ds.ds_item=<PATH/TO/TEST_DATA> \
        model.test_ds.text_file=<NAME_OF_TEST_INPUT_TEXT_FILE> \
        model.test_ds.labels_file=<NAME_OF_TEST_LABELS_FILE>

Set `do_training` to `false` and `do_testing` to `true` to perform evaluation without training:
    python punctuation_capitalization_train_evaluate.py \
        +do_testing=true \
        +do_training=false \
        pretrained_model=punctuation_en_bert \
        model.test_ds.ds_item=<PATH/TO/TEST/DATA> \
        model.test_ds.text_file=<NAME_OF_TEST_INPUT_TEXT_FILE> \
        model.test_ds.labels_file=<NAME_OF_TEST_LABELS_FILE>

"""


@hydra_runner(config_path="conf", config_name="punctuation_capitalization_config")
def main(cfg: DictConfig) -> None:
    torch.manual_seed(42)
    cfg = OmegaConf.merge(OmegaConf.structured(PunctuationCapitalizationConfig()), cfg)
    trainer = pl.Trainer(**cfg.trainer)
    exp_manager(trainer, cfg.get("exp_manager", None))
    if not cfg.do_training and not cfg.do_testing:
        raise ValueError("At least one of config parameters `do_training` and `do_testing` has to `true`.")
    if cfg.do_training:
        if cfg.model.get('train_ds') is None:
            raise ValueError('`model.train_ds` config section is required if `do_training` config item is `True`.')
    if cfg.do_testing:
        if cfg.model.get('test_ds') is None:
            raise ValueError('`model.test_ds` config section is required if `do_testing` config item is `True`.')

    if not cfg.pretrained_model:
        logging.info(f'Config: {OmegaConf.to_yaml(cfg)}')
        model = PunctuationCapitalizationModel(cfg.model, trainer=trainer)
    else:
        if os.path.exists(cfg.pretrained_model):
            model = PunctuationCapitalizationModel.restore_from(cfg.pretrained_model)
        elif cfg.pretrained_model in PunctuationCapitalizationModel.get_available_model_names():
            model = PunctuationCapitalizationModel.from_pretrained(cfg.pretrained_model)
        else:
            raise ValueError(
                f'Config parameter `pretrained_model` should contain a path to the pre-trained .nemo file or a model '
                f'name from '
                f'{[m.pretrained_model_name for m in PunctuationCapitalizationModel.list_available_models()]}. '
                f'Provided `pretrained_model="{cfg.pretrained_model}"` is neither a valid path, nor a valid model '
                f'name.'
            )
        model.update_config_after_restoring_from_checkpoint(
            class_labels=cfg.model.class_labels,
            common_dataset_parameters=cfg.model.common_dataset_parameters,
            train_ds=cfg.model.get('train_ds') if cfg.do_training else None,
            validation_ds=cfg.model.get('validation_ds') if cfg.do_training else None,
            test_ds=cfg.model.get('test_ds') if cfg.do_testing else None,
            optim=cfg.model.get('optim') if cfg.do_training else None,
        )
        model.set_trainer(trainer)
        if cfg.do_training:
            model.setup_training_data()
            model.setup_multiple_validation_data(cfg.model.validation_ds)
            model.setup_optimization()
        else:
            model.setup_multiple_test_data(cfg.model.test_ds)
    if cfg.do_training:
        trainer.fit(model)
    if cfg.do_testing:
        trainer.test(model)


if __name__ == '__main__':
    main()