File size: 9,344 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script can be used to process and import IMDB, ChemProt, SST-2, and THUCnews datasets into NeMo's format.
You may run it as the following:
python import_datasets.py \
--dataset_name DATASET_NAME \
--target_data_dir TARGET_PATH \
--source_data_dir SOURCE_PATH
The dataset should be specified by "DATASET_NAME" which can be from ["sst-2", "chemprot", "imdb", "thucnews"].
It reads the data from "SOURCE_PATH" folder, processes and converts the data into NeMo's format.
Then writes the results into "TARGET_PATH" folder.
"""
import argparse
import csv
import glob
import os
from os.path import exists
import tqdm
from nemo.utils import logging
def process_imdb(infold, outfold, uncased, modes=['train', 'test']):
if not os.path.exists(infold):
link = 'https://ai.stanford.edu/~amaas/data/sentiment/'
raise ValueError(
f'Data not found at {infold}. '
f'Please download IMDB reviews dataset from {link} and '
f'extract it into the folder specified by source_data_dir argument.'
)
logging.info(f'Processing IMDB dataset and store at {outfold}')
os.makedirs(outfold, exist_ok=True)
outfiles = {}
for mode in modes:
outfiles[mode] = open(os.path.join(outfold, mode + '.tsv'), 'w')
for sent in ['neg', 'pos']:
if sent == 'neg':
label = 0
else:
label = 1
files = glob.glob(f'{infold}/{mode}/{sent}/*.txt')
for file in files:
with open(file, 'r') as f:
review = f.read().strip()
if uncased:
review = review.lower()
review = review.replace("<br />", "")
outfiles[mode].write(f'{review}\t{label}\n')
for mode in modes:
outfiles[mode].close()
class_labels_file = open(os.path.join(outfold, 'label_ids.tsv'), 'w')
class_labels_file.write('negative\npositive\n')
class_labels_file.close()
def process_sst2(infold, outfold, uncased, splits=['train', 'dev']):
"""Process sst2 dataset."""
# "test" split doesn't have labels, so it is skipped
if not os.path.exists(infold):
link = 'https://dl.fbaipublicfiles.com/glue/data/SST-2.zip'
raise ValueError(
f'Data not found at {infold}. Please download SST-2 dataset from `{link}` and '
f'extract it into the folder specified by `source_data_dir` argument.'
)
logging.info(f'Processing SST-2 dataset')
os.makedirs(outfold, exist_ok=True)
def _read_tsv(input_file, quotechar=None):
"""Read a tab separated value file."""
with open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
for split in splits:
# Load input file.
input_file = os.path.join(infold, split + '.tsv')
lines = _read_tsv(input_file)
# Create output.
outfile = open(os.path.join(outfold, split + '.tsv'), 'w')
# Copy lines, skip the header (line 0).
for line in lines[1:]:
text = line[0]
label = line[1]
# Lowercase when required.
if uncased:
text = text.lower()
# Write output.
outfile.write(f'{text}\t{label}\n')
# Close file.
outfile.close()
class_labels_file = open(os.path.join(outfold, 'label_ids.tsv'), 'w')
class_labels_file.write('negative\npositive\n')
class_labels_file.close()
logging.info(f'Result stored at {outfold}')
def process_chemprot(source_dir, target_dir, uncased, modes=['train', 'test', 'dev']):
if not os.path.exists(source_dir):
link = 'https://github.com/arwhirang/recursive_chemprot/tree/master/Demo/tree_LSTM/data'
raise ValueError(f'Data not found at {source_dir}. ' f'Please download ChemProt from {link}.')
logging.info(f'Processing Chemprot dataset and store at {target_dir}')
os.makedirs(target_dir, exist_ok=True)
naming_map = {'train': 'trainingPosit_chem', 'test': 'testPosit_chem', 'dev': 'developPosit_chem'}
def _read_tsv(input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
outfiles = {}
label_mapping = {}
out_label_mapping = open(os.path.join(target_dir, 'label_mapping.tsv'), 'w')
for mode in modes:
outfiles[mode] = open(os.path.join(target_dir, mode + '.tsv'), 'w')
input_file = os.path.join(source_dir, naming_map[mode])
lines = _read_tsv(input_file)
for line in lines:
text = line[1]
label = line[2]
if label == "True":
label = line[3]
if uncased:
text = text.lower()
if label not in label_mapping:
out_label_mapping.write(f'{label}\t{len(label_mapping)}\n')
label_mapping[label] = len(label_mapping)
label = label_mapping[label]
outfiles[mode].write(f'{text}\t{label}\n')
for mode in modes:
outfiles[mode].close()
out_label_mapping.close()
def process_thucnews(infold, outfold):
modes = ['train', 'test']
train_size = 0.8
if not os.path.exists(infold):
link = 'thuctc.thunlp.org/'
raise ValueError(f'Data not found at {infold}. ' f'Please download THUCNews from {link}.')
logging.info(f'Processing THUCNews dataset and store at {outfold}')
os.makedirs(outfold, exist_ok=True)
outfiles = {}
for mode in modes:
outfiles[mode] = open(os.path.join(outfold, mode + '.tsv'), 'a+', encoding='utf-8')
categories = ['体育', '娱乐', '家居', '彩票', '房产', '教育', '时尚', '时政', '星座', '游戏', '社会', '科技', '股票', '财经']
for category in categories:
label = categories.index(category)
category_files = glob.glob(f'{infold}/{category}/*.txt')
test_num = int(len(category_files) * (1 - train_size))
test_files = category_files[:test_num]
train_files = category_files[test_num:]
for mode in modes:
logging.info(f'Processing {mode} data of the category {category}')
if mode == 'test':
files = test_files
else:
files = train_files
if len(files) == 0:
logging.info(f'Skipping category {category} for {mode} mode')
continue
for file in tqdm.tqdm(files):
with open(file, 'r', encoding='utf-8') as f:
news = f.read().strip().replace('\r', '')
news = news.replace('\n', '').replace('\t', ' ')
outfiles[mode].write(f'{news}\t{label}\n')
for mode in modes:
outfiles[mode].close()
if __name__ == "__main__":
# Parse the command-line arguments.
parser = argparse.ArgumentParser(description="Process and convert datasets into NeMo\'s format.")
parser.add_argument("--dataset_name", required=True, type=str, choices=['imdb', 'thucnews', 'chemprot'])
parser.add_argument(
"--source_data_dir", required=True, type=str, help='The path to the folder containing the dataset files.'
)
parser.add_argument("--target_data_dir", required=True, type=str)
parser.add_argument("--do_lower_case", action='store_true')
args = parser.parse_args()
dataset_name = args.dataset_name
do_lower_case = args.do_lower_case
source_dir = args.source_data_dir
target_dir = args.target_data_dir
if not exists(source_dir):
raise FileNotFoundError(f"{source_dir} does not exist.")
if dataset_name == 'imdb':
process_imdb(source_dir, target_dir, do_lower_case)
elif dataset_name == 'thucnews':
process_thucnews(source_dir, target_dir)
elif dataset_name == "chemprot":
process_chemprot(source_dir, target_dir, do_lower_case)
elif dataset_name == "sst-2":
process_sst2(source_dir, target_dir, do_lower_case)
else:
raise ValueError(
f'Dataset {dataset_name} is not supported.'
+ "Please make sure that you build the preprocessing process for it. "
+ "NeMo's format assumes that a data file has a header and each line of the file follows "
+ "the format: text [TAB] label. Label is assumed to be an integer."
)
|