File size: 4,993 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
from ast import literal_eval

from tqdm import tqdm


def load_json(filepath):
    with open(filepath, "r") as f:
        data = json.load(f)
    return data


def dump_json(filepath, data):
    with open(filepath, "w") as f:
        json.dump(data, f)


def get_context_from_passages(passages, keep_only_relevant_passages):
    contexts = []
    if keep_only_relevant_passages:
        for passage in passages:
            if passage["is_selected"] == 1:
                contexts.append(passage["passage_text"])
    else:
        contexts = [passage["passage_text"] for passage in passages]

    return " ".join(contexts)


def format_answers_into_squad_format(answers):
    is_impossible = True if "No Answer Present." in answers else False
    if is_impossible:
        answers = []
    else:
        answers = [{"text": ans, "answer_start": -1} for ans in answers]

    return answers


def convert_msmarco_to_squad_format(msmarco_data, args):
    ids = list(msmarco_data["query"])
    squad_data = {"data": [{"title": "MSMARCO", "paragraphs": []}], "version": "v2.1"}
    for index, _id in enumerate(tqdm(ids)):

        context = get_context_from_passages(msmarco_data["passages"][_id], args.keep_only_relevant_passages)
        if not context:
            continue

        query = msmarco_data["query"][_id]

        # use well formed answers if present, else use the 'answers' field
        well_formed_answers = msmarco_data['wellFormedAnswers'][_id]
        well_formed_answers = (
            well_formed_answers if isinstance(well_formed_answers, list) else literal_eval(well_formed_answers)
        )
        answers = well_formed_answers if well_formed_answers else msmarco_data["answers"][_id]
        answers = format_answers_into_squad_format(answers)
        if args.exclude_negative_samples and (not answers):
            continue

        squad_data["data"][0]["paragraphs"].append(
            {
                "context": context,
                "qas": [
                    {"id": index, "question": query, "answers": answers, "is_impossible": False if answers else True,}
                ],
            }
        )

    return squad_data


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--msmarco_train_input_filepath", default=None, type=str, required=True)
    parser.add_argument("--msmarco_dev_input_filepath", default=None, type=str, required=True)
    parser.add_argument("--converted_train_save_path", default=None, type=str, required=True)
    parser.add_argument("--converted_dev_save_path", default=None, type=str, required=True)
    parser.add_argument(
        "--exclude_negative_samples",
        default=False,
        type=bool,
        help="whether to keep No Answer samples in the dataset",
        required=False,
    )
    parser.add_argument(
        "--keep_only_relevant_passages",
        default=False,
        type=bool,
        help="if True, will only use passages with is_selected=True for context",
        required=False,
    )
    args = parser.parse_args()

    print("converting MS-MARCO train dataset...")
    msmarco_train_data = load_json(args.msmarco_train_input_filepath)
    squad_train_data = convert_msmarco_to_squad_format(msmarco_train_data, args)
    dump_json(args.converted_train_save_path, squad_train_data)

    print("converting MS-MARCO dev dataset...")
    msmarco_dev_data = load_json(args.msmarco_dev_input_filepath)
    squad_dev_data = convert_msmarco_to_squad_format(msmarco_dev_data, args)
    dump_json(args.converted_dev_save_path, squad_dev_data)


if __name__ == "__main__":
    """
    Please agree to the Terms of Use at:
        https://microsoft.github.io/msmarco/ 
    Download data at:
        https://msmarco.blob.core.windows.net/msmarco/train_v2.1.json.gz
        https://msmarco.blob.core.windows.net/msmarco/dev_v2.1.json.gz

    Example usage:
        python convert_msmarco_to_squad_format.py \
            --msmarco_train_input_filepath=/path/to/msmarco_train_v2.1.json \
            --msmarco_dev_input_filepath=/path/to/msmarco_dev_v2.1.json \
            --converted_train_save_path=/path/to/msmarco_squad_format_train.json \
            --converted_dev_save_path=/path/to/msmarco_squad_format_dev.json \
            --exclude_negative_samples=False \
            --keep_only_relevant_passages=False
    """
    main()