File size: 12,218 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Given NMT model's .nemo file(s), this script can be used to translate text.
USAGE Example:
1. Obtain text file in src language. You can use sacrebleu to obtain standard test sets like so:
    sacrebleu -t wmt14 -l de-en --echo src > wmt14-de-en.src
2. Translate:
    python nmt_transformer_infer.py --model=[Path to .nemo file(s)] --srctext=wmt14-de-en.src --tgtout=wmt14-de-en.pre
"""


import json
from argparse import ArgumentParser

import torch

import nemo.collections.nlp as nemo_nlp
from nemo.collections.nlp.modules.common.transformer import (
    BeamSearchSequenceGenerator,
    BeamSearchSequenceGeneratorWithLanguageModel,
    EnsembleBeamSearchSequenceGenerator,
)
from nemo.utils import logging


def translate_text(
    models, args, src_text, tgt_text, tgt_text_all, src_texts, all_scores, all_timing, ensemble_generator
):
    if len(models) > 1:
        src_ids, src_mask = models[0].prepare_inference_batch(src_text)
        best_translations = ensemble_generator(src_ids, src_mask, return_beam_scores=args.write_scores)
        if args.write_scores:
            all_results, scores, best_translations = (
                best_translations[0],
                best_translations[1],
                best_translations[2],
            )
            scores = scores.view(-1).data.cpu().numpy().tolist()
            all_scores += scores
            src_texts += [item for item in src_text for i in range(args.beam_size)]
            all_results = models[0].ids_to_postprocessed_text(
                all_results, models[0].decoder_tokenizer, models[0].target_processor
            )
            tgt_text_all += all_results
        best_translations = models[0].ids_to_postprocessed_text(
            best_translations, models[0].decoder_tokenizer, models[0].target_processor
        )
        tgt_text += best_translations
    else:
        model = models[0]
        best_translations = model.translate(
            text=src_text,
            source_lang=args.source_lang,
            target_lang=args.target_lang,
            return_beam_scores=args.write_scores,
            log_timing=args.write_timing,
        )

        if args.write_timing:
            *best_translations, timing_dict = best_translations
            all_timing.append(timing_dict)
        else:
            best_translations = (best_translations,)

        if args.write_scores:
            all_results, scores, best_translations = (
                best_translations[0],
                best_translations[1],
                best_translations[2],
            )
            all_scores += scores
            src_texts += [item for item in src_text for i in range(args.beam_size)]
            tgt_text_all += all_results
        else:
            best_translations = best_translations[0]

        tgt_text += best_translations

    print(f"Translated {len(tgt_text)} sentences")


def main():
    parser = ArgumentParser()
    parser.add_argument(
        "--model",
        type=str,
        required=True,
        help="Path to .nemo model file(s). If ensembling, provide comma separated paths to multiple models.",
    )
    parser.add_argument("--srctext", type=str, required=True, help="Path to the file to translate.")
    parser.add_argument(
        "--tgtout", type=str, required=True, help="Path to the file where translations are to be written."
    )
    parser.add_argument(
        "--batch_size", type=int, default=256, help="Number of sentences to batch together while translatiing."
    )
    parser.add_argument("--beam_size", type=int, default=4, help="Beam size.")
    parser.add_argument(
        "--len_pen", type=float, default=0.6, help="Length Penalty. Ref: https://arxiv.org/abs/1609.08144"
    )
    parser.add_argument(
        "--max_delta_length",
        type=int,
        default=5,
        help="Stop generating if target sequence length exceeds source length by this number.",
    )
    parser.add_argument(
        "--target_lang",
        type=str,
        default=None,
        help="Target language identifier ex: en,de,fr,es etc. If both `--target_lang` and `--source_lang` are "
        "not set, then target language processing will be done the same way as during model training. If "
        "`--target_lang` parameter is not set but `--source_lang` parameter is set, then target language "
        "processing will not be performed. If `--target_lang` equals 'ignore', then target language processing "
        "will not be performed regardless of value of `--source_lang` parameter.",
    )
    parser.add_argument(
        "--source_lang",
        type=str,
        default=None,
        help="Source language identifier ex: en,de,fr,es etc. If both `--target_lang` and `--source_lang` are "
        "not set, then source language processing will be done the same way as during model training. If "
        "`--source_lang` parameter is not set but `--target_lang` parameter is set, then source language "
        "processing will not be performed. If `--source_lang` equals 'ignore', then source language processing "
        "will not be performed regardless of value of `--target_lang` parameter.",
    )
    parser.add_argument(
        "--write_scores",
        action="store_true",
        help="Whether to write a separate file with scores not including length penalties corresponding to each beam hypothesis (.score suffix)",
    )
    parser.add_argument(
        "--write_timing",
        action="store_true",
        help="Whether to write a separate file with detailed timing info (.timing.json suffix)",
    )
    # shallow fusion specific parameters
    parser.add_argument(
        "--lm_model",
        type=str,
        default=None,
        help="Optional path to an LM model that has the same tokenizer as NMT models for shallow fuison. Note: If using --write_scores, it will add LM scores as well.",
    )
    parser.add_argument(
        "--fusion_coef", type=float, default=0.07, help="Weight assigned to LM scores during shallow fusion."
    )

    args = parser.parse_args()
    torch.set_grad_enabled(False)
    logging.info("Attempting to initialize from .nemo file")
    models = []
    for model_path in args.model.split(','):
        if not model_path.endswith('.nemo'):
            raise NotImplementedError(f"Only support .nemo files, but got: {model_path}")
        model = nemo_nlp.models.machine_translation.MTEncDecModel.restore_from(restore_path=model_path).eval()
        models.append(model)

    if (len(models) > 1) and (args.write_timing):
        raise RuntimeError("Cannot measure timing when more than 1 model is used")

    src_text = []
    tgt_text = []
    tgt_text_all = []
    src_texts = []
    all_scores = []
    all_timing = []

    if torch.cuda.is_available():
        models = [model.cuda() for model in models]

    if args.lm_model is not None:
        lm_model = nemo_nlp.models.language_modeling.TransformerLMModel.restore_from(restore_path=args.lm_model).eval()
    else:
        lm_model = None

    if len(models) > 1:
        ensemble_generator = EnsembleBeamSearchSequenceGenerator(
            encoders=[model.encoder for model in models],
            embeddings=[model.decoder.embedding for model in models],
            decoders=[model.decoder.decoder for model in models],
            log_softmaxes=[model.log_softmax for model in models],
            max_sequence_length=512,
            beam_size=args.beam_size,
            bos=models[0].decoder_tokenizer.bos_id,
            pad=models[0].decoder_tokenizer.pad_id,
            eos=models[0].decoder_tokenizer.eos_id,
            len_pen=args.len_pen,
            max_delta_length=args.max_delta_length,
            language_model=lm_model,
            fusion_coef=args.fusion_coef,
        )
    else:
        model = models[0]
        ensemble_generator = None
        if lm_model is not None:
            model.beam_search = BeamSearchSequenceGeneratorWithLanguageModel(
                embedding=model.decoder.embedding,
                decoder=model.decoder.decoder,
                log_softmax=model.log_softmax,
                bos=model.decoder_tokenizer.bos_id,
                pad=model.decoder_tokenizer.pad_id,
                eos=model.decoder_tokenizer.eos_id,
                language_model=lm_model,
                fusion_coef=args.fusion_coef,
                max_sequence_length=model.decoder.max_sequence_length,
                beam_size=args.beam_size,
                len_pen=args.len_pen,
                max_delta_length=args.max_delta_length,
            )
        else:
            model.beam_search = BeamSearchSequenceGenerator(
                embedding=model.decoder.embedding,
                decoder=model.decoder.decoder,
                log_softmax=model.log_softmax,
                bos=model.decoder_tokenizer.bos_id,
                pad=model.decoder_tokenizer.pad_id,
                eos=model.decoder_tokenizer.eos_id,
                max_sequence_length=model.decoder.max_sequence_length,
                beam_size=args.beam_size,
                len_pen=args.len_pen,
                max_delta_length=args.max_delta_length,
            )

    logging.info(f"Translating: {args.srctext}")

    with open(args.srctext, 'r') as src_f:
        for line in src_f:
            src_text.append(line.strip())
            if len(src_text) == args.batch_size:
                # warmup when measuring timing
                if args.write_timing and (not all_timing):
                    print("running a warmup batch")
                    translate_text(
                        models=models,
                        args=args,
                        src_text=src_text,
                        tgt_text=[],
                        tgt_text_all=[],
                        src_texts=[],
                        all_scores=[],
                        all_timing=[],
                        ensemble_generator=ensemble_generator,
                    )
                translate_text(
                    models=models,
                    args=args,
                    src_text=src_text,
                    tgt_text=tgt_text,
                    tgt_text_all=tgt_text_all,
                    src_texts=src_texts,
                    all_scores=all_scores,
                    all_timing=all_timing,
                    ensemble_generator=ensemble_generator,
                )
                src_text = []

        if len(src_text) > 0:
            translate_text(
                models=models,
                args=args,
                src_text=src_text,
                tgt_text=tgt_text,
                tgt_text_all=tgt_text_all,
                src_texts=src_texts,
                all_scores=all_scores,
                all_timing=all_timing,
                ensemble_generator=ensemble_generator,
            )

    with open(args.tgtout, 'w') as tgt_f:
        for line in tgt_text:
            tgt_f.write(line + "\n")

    if args.write_scores:
        with open(args.tgtout + '.score', 'w') as tgt_f_scores:
            for line, score, inp in zip(tgt_text_all, all_scores, src_texts):
                tgt_f_scores.write(inp + "\t" + line + "\t" + str(score) + "\n")

    if args.write_timing:
        # collect list of dicts to a dict of lists
        timing_dict = {}
        if len(all_timing):
            for k in all_timing[0].keys():
                timing_dict[k] = [t[k] for t in all_timing]

        with open(args.tgtout + '.timing.json', 'w') as timing_fh:
            json.dump(timing_dict, timing_fh)


if __name__ == '__main__':
    main()  # noqa pylint: disable=no-value-for-parameter