File size: 12,218 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Given NMT model's .nemo file(s), this script can be used to translate text.
USAGE Example:
1. Obtain text file in src language. You can use sacrebleu to obtain standard test sets like so:
sacrebleu -t wmt14 -l de-en --echo src > wmt14-de-en.src
2. Translate:
python nmt_transformer_infer.py --model=[Path to .nemo file(s)] --srctext=wmt14-de-en.src --tgtout=wmt14-de-en.pre
"""
import json
from argparse import ArgumentParser
import torch
import nemo.collections.nlp as nemo_nlp
from nemo.collections.nlp.modules.common.transformer import (
BeamSearchSequenceGenerator,
BeamSearchSequenceGeneratorWithLanguageModel,
EnsembleBeamSearchSequenceGenerator,
)
from nemo.utils import logging
def translate_text(
models, args, src_text, tgt_text, tgt_text_all, src_texts, all_scores, all_timing, ensemble_generator
):
if len(models) > 1:
src_ids, src_mask = models[0].prepare_inference_batch(src_text)
best_translations = ensemble_generator(src_ids, src_mask, return_beam_scores=args.write_scores)
if args.write_scores:
all_results, scores, best_translations = (
best_translations[0],
best_translations[1],
best_translations[2],
)
scores = scores.view(-1).data.cpu().numpy().tolist()
all_scores += scores
src_texts += [item for item in src_text for i in range(args.beam_size)]
all_results = models[0].ids_to_postprocessed_text(
all_results, models[0].decoder_tokenizer, models[0].target_processor
)
tgt_text_all += all_results
best_translations = models[0].ids_to_postprocessed_text(
best_translations, models[0].decoder_tokenizer, models[0].target_processor
)
tgt_text += best_translations
else:
model = models[0]
best_translations = model.translate(
text=src_text,
source_lang=args.source_lang,
target_lang=args.target_lang,
return_beam_scores=args.write_scores,
log_timing=args.write_timing,
)
if args.write_timing:
*best_translations, timing_dict = best_translations
all_timing.append(timing_dict)
else:
best_translations = (best_translations,)
if args.write_scores:
all_results, scores, best_translations = (
best_translations[0],
best_translations[1],
best_translations[2],
)
all_scores += scores
src_texts += [item for item in src_text for i in range(args.beam_size)]
tgt_text_all += all_results
else:
best_translations = best_translations[0]
tgt_text += best_translations
print(f"Translated {len(tgt_text)} sentences")
def main():
parser = ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to .nemo model file(s). If ensembling, provide comma separated paths to multiple models.",
)
parser.add_argument("--srctext", type=str, required=True, help="Path to the file to translate.")
parser.add_argument(
"--tgtout", type=str, required=True, help="Path to the file where translations are to be written."
)
parser.add_argument(
"--batch_size", type=int, default=256, help="Number of sentences to batch together while translatiing."
)
parser.add_argument("--beam_size", type=int, default=4, help="Beam size.")
parser.add_argument(
"--len_pen", type=float, default=0.6, help="Length Penalty. Ref: https://arxiv.org/abs/1609.08144"
)
parser.add_argument(
"--max_delta_length",
type=int,
default=5,
help="Stop generating if target sequence length exceeds source length by this number.",
)
parser.add_argument(
"--target_lang",
type=str,
default=None,
help="Target language identifier ex: en,de,fr,es etc. If both `--target_lang` and `--source_lang` are "
"not set, then target language processing will be done the same way as during model training. If "
"`--target_lang` parameter is not set but `--source_lang` parameter is set, then target language "
"processing will not be performed. If `--target_lang` equals 'ignore', then target language processing "
"will not be performed regardless of value of `--source_lang` parameter.",
)
parser.add_argument(
"--source_lang",
type=str,
default=None,
help="Source language identifier ex: en,de,fr,es etc. If both `--target_lang` and `--source_lang` are "
"not set, then source language processing will be done the same way as during model training. If "
"`--source_lang` parameter is not set but `--target_lang` parameter is set, then source language "
"processing will not be performed. If `--source_lang` equals 'ignore', then source language processing "
"will not be performed regardless of value of `--target_lang` parameter.",
)
parser.add_argument(
"--write_scores",
action="store_true",
help="Whether to write a separate file with scores not including length penalties corresponding to each beam hypothesis (.score suffix)",
)
parser.add_argument(
"--write_timing",
action="store_true",
help="Whether to write a separate file with detailed timing info (.timing.json suffix)",
)
# shallow fusion specific parameters
parser.add_argument(
"--lm_model",
type=str,
default=None,
help="Optional path to an LM model that has the same tokenizer as NMT models for shallow fuison. Note: If using --write_scores, it will add LM scores as well.",
)
parser.add_argument(
"--fusion_coef", type=float, default=0.07, help="Weight assigned to LM scores during shallow fusion."
)
args = parser.parse_args()
torch.set_grad_enabled(False)
logging.info("Attempting to initialize from .nemo file")
models = []
for model_path in args.model.split(','):
if not model_path.endswith('.nemo'):
raise NotImplementedError(f"Only support .nemo files, but got: {model_path}")
model = nemo_nlp.models.machine_translation.MTEncDecModel.restore_from(restore_path=model_path).eval()
models.append(model)
if (len(models) > 1) and (args.write_timing):
raise RuntimeError("Cannot measure timing when more than 1 model is used")
src_text = []
tgt_text = []
tgt_text_all = []
src_texts = []
all_scores = []
all_timing = []
if torch.cuda.is_available():
models = [model.cuda() for model in models]
if args.lm_model is not None:
lm_model = nemo_nlp.models.language_modeling.TransformerLMModel.restore_from(restore_path=args.lm_model).eval()
else:
lm_model = None
if len(models) > 1:
ensemble_generator = EnsembleBeamSearchSequenceGenerator(
encoders=[model.encoder for model in models],
embeddings=[model.decoder.embedding for model in models],
decoders=[model.decoder.decoder for model in models],
log_softmaxes=[model.log_softmax for model in models],
max_sequence_length=512,
beam_size=args.beam_size,
bos=models[0].decoder_tokenizer.bos_id,
pad=models[0].decoder_tokenizer.pad_id,
eos=models[0].decoder_tokenizer.eos_id,
len_pen=args.len_pen,
max_delta_length=args.max_delta_length,
language_model=lm_model,
fusion_coef=args.fusion_coef,
)
else:
model = models[0]
ensemble_generator = None
if lm_model is not None:
model.beam_search = BeamSearchSequenceGeneratorWithLanguageModel(
embedding=model.decoder.embedding,
decoder=model.decoder.decoder,
log_softmax=model.log_softmax,
bos=model.decoder_tokenizer.bos_id,
pad=model.decoder_tokenizer.pad_id,
eos=model.decoder_tokenizer.eos_id,
language_model=lm_model,
fusion_coef=args.fusion_coef,
max_sequence_length=model.decoder.max_sequence_length,
beam_size=args.beam_size,
len_pen=args.len_pen,
max_delta_length=args.max_delta_length,
)
else:
model.beam_search = BeamSearchSequenceGenerator(
embedding=model.decoder.embedding,
decoder=model.decoder.decoder,
log_softmax=model.log_softmax,
bos=model.decoder_tokenizer.bos_id,
pad=model.decoder_tokenizer.pad_id,
eos=model.decoder_tokenizer.eos_id,
max_sequence_length=model.decoder.max_sequence_length,
beam_size=args.beam_size,
len_pen=args.len_pen,
max_delta_length=args.max_delta_length,
)
logging.info(f"Translating: {args.srctext}")
with open(args.srctext, 'r') as src_f:
for line in src_f:
src_text.append(line.strip())
if len(src_text) == args.batch_size:
# warmup when measuring timing
if args.write_timing and (not all_timing):
print("running a warmup batch")
translate_text(
models=models,
args=args,
src_text=src_text,
tgt_text=[],
tgt_text_all=[],
src_texts=[],
all_scores=[],
all_timing=[],
ensemble_generator=ensemble_generator,
)
translate_text(
models=models,
args=args,
src_text=src_text,
tgt_text=tgt_text,
tgt_text_all=tgt_text_all,
src_texts=src_texts,
all_scores=all_scores,
all_timing=all_timing,
ensemble_generator=ensemble_generator,
)
src_text = []
if len(src_text) > 0:
translate_text(
models=models,
args=args,
src_text=src_text,
tgt_text=tgt_text,
tgt_text_all=tgt_text_all,
src_texts=src_texts,
all_scores=all_scores,
all_timing=all_timing,
ensemble_generator=ensemble_generator,
)
with open(args.tgtout, 'w') as tgt_f:
for line in tgt_text:
tgt_f.write(line + "\n")
if args.write_scores:
with open(args.tgtout + '.score', 'w') as tgt_f_scores:
for line, score, inp in zip(tgt_text_all, all_scores, src_texts):
tgt_f_scores.write(inp + "\t" + line + "\t" + str(score) + "\n")
if args.write_timing:
# collect list of dicts to a dict of lists
timing_dict = {}
if len(all_timing):
for k in all_timing[0].keys():
timing_dict[k] = [t[k] for t in all_timing]
with open(args.tgtout + '.timing.json', 'w') as timing_fh:
json.dump(timing_dict, timing_fh)
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|