File size: 8,933 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

from nemo.collections.nlp.data.machine_translation.preproc_mt_data import MTDataPreproc

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='NMT dataset pre-processing')
    parser.add_argument('--shared_tokenizer', action="store_true", help='Whether to share encoder/decoder tokenizers')
    parser.add_argument('--clean', action="store_true", help='Whether to clean dataset based on length diff')
    parser.add_argument('--tar_file_prefix', type=str, default='parallel', help='Prefix for tar files')
    parser.add_argument('--src_fname', type=str, required=True, help='Path to the source file')
    parser.add_argument('--tgt_fname', type=str, required=True, help='Path to the target file')
    parser.add_argument('--out_dir', type=str, required=True, help='Path to store dataloader and tokenizer models')
    parser.add_argument('--encoder_model_name', type=str, default=None, help='For use with pretrained encoders')
    parser.add_argument(
        '--decoder_model_name', type=str, default=None, help='For use with pretrained decoders (not yet supported)'
    )
    parser.add_argument(
        '--encoder_tokenizer_model', type=str, default='None', help='Path to pre-trained encoder tokenizer model'
    )
    parser.add_argument(
        '--encoder_tokenizer_name',
        type=str,
        default='yttm',
        help='Encoder BPE Tokenizer Name, Options: [yttm, sentencepiece]',
    )
    parser.add_argument('--encoder_tokenizer_vocab_size', type=int, default=32000, help='Encoder Vocab size after BPE')
    parser.add_argument(
        '--encoder_tokenizer_coverage', type=float, default=0.999, help='Encoder Character coverage for BPE'
    )
    parser.add_argument('--encoder_tokenizer_bpe_dropout', type=float, default=0.1, help='Encoder BPE dropout prob')
    parser.add_argument(
        '--encoder_tokenizer_r2l', action="store_true", help='Whether to return encoded sequence from right to left'
    )
    parser.add_argument(
        '--encoder_tokenizer_legacy',
        action="store_true",
        help='Whether to use legacy tokenizer implementation of sentencepiece',
    )
    parser.add_argument(
        '--decoder_tokenizer_model', type=str, default='None', help='Path to pre-trained decoder tokenizer model'
    )
    parser.add_argument(
        '--decoder_tokenizer_name',
        type=str,
        default='yttm',
        help='Encoder BPE Tokenizer Name, Options: [yttm, sentencepiece]',
    )
    parser.add_argument('--decoder_tokenizer_vocab_size', type=int, default=32000, help='Encoder Vocab size after BPE')
    parser.add_argument(
        '--decoder_tokenizer_coverage', type=float, default=0.999, help='Encoder Character coverage for BPE'
    )
    parser.add_argument('--decoder_tokenizer_bpe_dropout', type=float, default=0.1, help='Encoder BPE dropout prob')
    parser.add_argument(
        '--decoder_tokenizer_r2l', action="store_true", help='Whether to return encoded sequence from right to left'
    )
    parser.add_argument(
        '--decoder_tokenizer_legacy',
        action="store_true",
        help='Whether to use legacy tokenizer implementation of sentencepiece',
    )
    parser.add_argument('--max_seq_length', type=int, default=512, help='Max Sequence Length')
    parser.add_argument('--min_seq_length', type=int, default=1, help='Min Sequence Length')
    parser.add_argument('--tokens_in_batch', type=int, default=16000, help='# Tokens per batch per GPU')
    parser.add_argument('--coverage', type=float, default=0.999, help='BPE character coverage [0-1]')
    parser.add_argument(
        '--lines_per_dataset_fragment',
        type=int,
        default=1000000,
        help='Number of lines to consider for bucketing and padding',
    )
    parser.add_argument(
        '--num_batches_per_tarfile',
        type=int,
        default=1000,
        help='Number of batches (pickle files) within each tarfile',
    )
    parser.add_argument(
        '--n_preproc_jobs', type=int, default=-2, help='Number of processes to use for creating the tarred dataset.',
    )
    parser.add_argument(
        '--byte_fallback',
        action="store_true",
        help='Whether to use byte fallback with sentencepiece for BPE tokenization.',
    )
    parser.add_argument(
        '--split_digits', action="store_true", help='Whether to split digits while tokenizing with sentencepiece.'
    )
    parser.add_argument(
        '--no_split_by_whitespace',
        action="store_true",
        help='If True, this will not respect whitepsaces while learning BPE merges.',
    )
    args = parser.parse_args()
    if not os.path.exists(args.out_dir):
        os.mkdir(args.out_dir)

    if (
        args.encoder_tokenizer_model != 'None'
        and args.decoder_tokenizer_model == 'None'
        or args.decoder_tokenizer_model != 'None'
        and args.encoder_tokenizer_model == 'None'
    ):
        if args.shared_tokenizer:
            raise ValueError(
                '''
                If using a pre-trained shared tokenizer,
                both encoder and decoder tokenizers must be the same
                '''
            )
        else:
            raise ValueError('Both encoder and decoder pre-trained tokenizer models must be specified')

    if args.encoder_tokenizer_model == 'None' and args.decoder_tokenizer_model == 'None':
        encoder_tokenizer_model, decoder_tokenizer_model = MTDataPreproc.train_tokenizers(
            out_dir=args.out_dir,
            src_fname=args.src_fname,
            tgt_fname=args.tgt_fname,
            shared_tokenizer=args.shared_tokenizer,
            encoder_tokenizer_name=args.encoder_tokenizer_name,
            encoder_tokenizer_vocab_size=args.encoder_tokenizer_vocab_size,
            encoder_tokenizer_coverage=args.encoder_tokenizer_coverage,
            decoder_tokenizer_name=args.decoder_tokenizer_name,
            decoder_tokenizer_vocab_size=args.decoder_tokenizer_vocab_size,
            decoder_tokenizer_coverage=args.decoder_tokenizer_coverage,
            global_rank=0,
            byte_fallback=args.byte_fallback,
            split_digits=args.split_digits,
            split_by_whitespace=not args.no_split_by_whitespace,
        )
    else:
        encoder_tokenizer_model, decoder_tokenizer_model = args.encoder_tokenizer_model, args.decoder_tokenizer_model

    encoder_tokenizer, decoder_tokenizer = MTDataPreproc.get_enc_dec_tokenizers(
        encoder_tokenizer_name=args.encoder_tokenizer_name,
        encoder_tokenizer_model=encoder_tokenizer_model,
        encoder_bpe_dropout=args.encoder_tokenizer_bpe_dropout,
        encoder_r2l=args.encoder_tokenizer_r2l,
        decoder_tokenizer_name=args.decoder_tokenizer_name,
        decoder_tokenizer_model=decoder_tokenizer_model,
        decoder_bpe_dropout=args.decoder_tokenizer_bpe_dropout,
        decoder_r2l=args.decoder_tokenizer_r2l,
        encoder_tokenizer_legacy=args.encoder_tokenizer_legacy,
        decoder_tokenizer_legacy=args.decoder_tokenizer_legacy,
    )

    _, _ = MTDataPreproc.preprocess_parallel_dataset(
        clean=args.clean,
        src_fname=args.src_fname,
        tgt_fname=args.tgt_fname,
        out_dir=args.out_dir,
        encoder_tokenizer_name=args.encoder_tokenizer_name,
        encoder_model_name=args.encoder_model_name,
        encoder_tokenizer_model=encoder_tokenizer_model,
        encoder_bpe_dropout=args.encoder_tokenizer_bpe_dropout,
        encoder_tokenizer_r2l=args.encoder_tokenizer_r2l,
        decoder_tokenizer_name=args.decoder_tokenizer_name,
        decoder_model_name=args.decoder_model_name,
        decoder_tokenizer_model=decoder_tokenizer_model,
        decoder_tokenizer_r2l=args.decoder_tokenizer_r2l,
        decoder_bpe_dropout=args.decoder_tokenizer_bpe_dropout,
        max_seq_length=args.max_seq_length,
        min_seq_length=args.min_seq_length,
        tokens_in_batch=args.tokens_in_batch,
        lines_per_dataset_fragment=args.lines_per_dataset_fragment,
        num_batches_per_tarfile=args.num_batches_per_tarfile,
        tar_file_prefix=args.tar_file_prefix,
        global_rank=0,
        world_size=1,
        n_jobs=args.n_preproc_jobs,
        encoder_tokenizer_legacy=args.encoder_tokenizer_legacy,
        decoder_tokenizer_legacy=args.decoder_tokenizer_legacy,
    )