File size: 10,102 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile

import torch.multiprocessing as mp
from omegaconf.omegaconf import OmegaConf, open_dict
from pytorch_lightning import Trainer
from pytorch_lightning.plugins.environments import TorchElasticEnvironment
from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector

from nemo.collections.nlp.models.language_modeling.megatron_finetune_model import MegatronT5FinetuneModel
from nemo.collections.nlp.models.language_modeling.megatron_glue_model import MegatronT5GLUEModel
from nemo.collections.nlp.models.language_modeling.megatron_t0_model import MegatronT0Model
from nemo.collections.nlp.modules.common.megatron.megatron_init import fake_initialize_model_parallel
from nemo.collections.nlp.parts.nlp_overrides import (
    GradScaler,
    MegatronHalfPrecisionPlugin,
    NLPDDPStrategy,
    NLPSaveRestoreConnector,
    PipelineMixedPrecisionPlugin,
)
from nemo.core.config import hydra_runner
from nemo.utils import AppState, logging
from nemo.utils.exp_manager import exp_manager
from nemo.utils.model_utils import inject_model_parallel_rank

mp.set_start_method("spawn", force=True)


def _modify_config(t5_cfg, cfg, add_cfg_to_tree=False):
    """
    This function modifies the original t5 pre-training config (t5_cfg) with attributes from the finetuning config (cfg).
    The `add_cfg_to_tree` arg adds `cfg` to the top of the yaml tree which is needed for all `hparams.yaml` files when passed as an arg to `load_from_checkpoint()`.
    """
    OmegaConf.set_struct(t5_cfg, True)
    with open_dict(t5_cfg):
        t5_cfg.megatron_amp_O2 = cfg.model.get('megatron_amp_O2', False)
        if hasattr(t5_cfg, 'encoder') and hasattr(t5_cfg, 'decoder'):
            t5_cfg.encoder.masked_softmax_fusion = False
            t5_cfg.decoder.masked_softmax_fusion = False
            t5_cfg.encoder.hidden_dropout = cfg.model.get('hidden_dropout', 0.1)
            t5_cfg.decoder.hidden_dropout = cfg.model.get('hidden_dropout', 0.1)
            if hasattr(t5_cfg.encoder, 'ffn_dropout'):
                t5_cfg.encoder.ffn_dropout = cfg.model.get('ffn_dropout', 0.1)
            if hasattr(t5_cfg.decoder, 'ffn_dropout'):
                t5_cfg.decoder.ffn_dropout = cfg.model.get('ffn_dropout', 0.1)
        else:
            t5_cfg.hidden_dropout = cfg.model.get('hidden_dropout', 0.1)
            t5_cfg.attention_dropout = cfg.model.get('attention_dropout', 0.1)
            t5_cfg.masked_softmax_fusion = False
        t5_cfg.data = cfg.model.data
        t5_cfg.precision = cfg.trainer.precision
        t5_cfg.optim = cfg.model.optim
        t5_cfg.micro_batch_size = cfg.model.data.train_ds.micro_batch_size
        t5_cfg.global_batch_size = cfg.model.data.train_ds.global_batch_size
        # XNLI has eval languages in the yaml config.
        if hasattr(cfg.model, 'eval_languages'):
            t5_cfg.eval_languages = cfg.model.eval_languages

        # This is needed when modifying a hparam file directly to load `.ckpt` files.
        # This is not needed to modify the cfg in `.nemo` files.
        if add_cfg_to_tree:
            OmegaConf.resolve(t5_cfg)
            t5_cfg.cfg = t5_cfg

    return t5_cfg


def load_from_nemo(cls, cfg, trainer, t5_cfg, modify_confg_fn):
    t5_cfg = modify_confg_fn(t5_cfg, cfg, add_cfg_to_tree=False)
    model = cls.restore_from(
        restore_path=cfg.model.restore_from_path,
        trainer=trainer,
        override_config_path=t5_cfg,
        save_restore_connector=NLPSaveRestoreConnector(),
    )
    return model


def load_from_checkpoint_dir(cls, cfg, trainer, modify_confg_fn):
    app_state = AppState()
    if cfg.model.tensor_model_parallel_size > 1 or cfg.model.pipeline_model_parallel_size > 1:
        app_state.model_parallel_size = cfg.model.tensor_model_parallel_size * cfg.model.pipeline_model_parallel_size
        app_state.tensor_model_parallel_size = cfg.model.tensor_model_parallel_size
        app_state.pipeline_model_parallel_size = cfg.model.pipeline_model_parallel_size
        (
            app_state.tensor_model_parallel_rank,
            app_state.pipeline_model_parallel_rank,
            app_state.model_parallel_size,
            app_state.data_parallel_size,
            app_state.pipeline_model_parallel_split_rank,
            app_state.virtual_pipeline_model_parallel_rank,
        ) = fake_initialize_model_parallel(
            world_size=app_state.model_parallel_size,
            rank=trainer.global_rank,
            tensor_model_parallel_size_=cfg.model.tensor_model_parallel_size,
            pipeline_model_parallel_size_=cfg.model.pipeline_model_parallel_size,
            pipeline_model_parallel_split_rank_=cfg.model.pipeline_model_parallel_split_rank,
        )
    checkpoint_path = inject_model_parallel_rank(
        os.path.join(cfg.model.pretrained_checkpoint.checkpoint_dir, cfg.model.pretrained_checkpoint.checkpoint_name)
    )
    hparams_file = OmegaConf.load(cfg.model.pretrained_checkpoint.hparams_file)
    t5_cfg = modify_confg_fn(hparams_file.cfg, cfg, add_cfg_to_tree=True)
    with tempfile.NamedTemporaryFile(suffix='.yaml') as f:
        OmegaConf.save(config=t5_cfg, f=f.name)
        model = cls.load_from_checkpoint(checkpoint_path=checkpoint_path, trainer=trainer, hparams_file=f.name,)
        return model


def validate_checkpoint_loading_args(cfg):
    if cfg.checkpoint_dir is None or not os.path.isdir(cfg.checkpoint_dir):
        raise ValueError(f'Checkpoint directory {cfg.checkpoint_dir} does not exist or is not a directory.')
    if cfg.checkpoint_name is None:
        raise ValueError(f'Checkpoint name {cfg.checkpoint_name} is not valid.')
    if cfg.hparams_file is None or not os.path.isfile(cfg.hparams_file):
        raise ValueError(f'Hparams file {cfg.hparams_file} does not exist or is not a file.')


@hydra_runner(config_path="conf", config_name="megatron_t5_config_finetune_glue_mnli")
def main(cfg) -> None:
    logging.info("\n\n************** Experiment configuration ***********")
    logging.info(f'\n{OmegaConf.to_yaml(cfg)}')

    megatron_amp_o2 = cfg.model.get('megatron_amp_O2', False)
    plugins = []
    strategy = NLPDDPStrategy(
        no_ddp_communication_hook=True,
        gradient_as_bucket_view=cfg.model.gradient_as_bucket_view,
        find_unused_parameters=False,
    )
    if cfg.trainer.precision in [16, 'bf16']:
        scaler = None
        if cfg.trainer.precision == 16:
            scaler = GradScaler(
                init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32),
                growth_interval=cfg.model.get('native_amp_growth_interval', 1000),
                hysteresis=cfg.model.get('hysteresis', 2),
            )
        if megatron_amp_o2:
            plugins.append(MegatronHalfPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler))
        else:
            plugins.append(PipelineMixedPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler))

    if cfg.get('cluster_type', None) == 'BCP':
        plugins.append(TorchElasticEnvironment())

    trainer = Trainer(plugins=plugins, strategy=strategy, **cfg.trainer)

    exp_manager(trainer, cfg.exp_manager)

    # update resume from checkpoint found by exp_manager
    if cfg.model.resume_from_checkpoint is not None:
        resume_from_checkpoint = cfg.model.resume_from_checkpoint
    else:
        resume_from_checkpoint = trainer._checkpoint_connector.resume_from_checkpoint_fit_path
    logging.info(f'Resuming training from checkpoint: {resume_from_checkpoint}')

    trainer._checkpoint_connector = CheckpointConnector(trainer, resume_from_checkpoint=resume_from_checkpoint)

    if hasattr(cfg.model.data.train_ds, 'task_name'):
        if cfg.model.restore_from_path:
            t5_cfg = MegatronT5GLUEModel.restore_from(
                restore_path=cfg.model.restore_from_path, trainer=trainer, return_config=True
            )
            model = load_from_nemo(MegatronT5GLUEModel, cfg, trainer, t5_cfg, modify_confg_fn=_modify_config)
        else:
            validate_checkpoint_loading_args(cfg.model.pretrained_checkpoint)
            model = load_from_checkpoint_dir(MegatronT5GLUEModel, cfg, trainer, modify_confg_fn=_modify_config)
    elif hasattr(cfg.model.data.train_ds, 'file_names'):
        if cfg.model.restore_from_path:
            t5_cfg = MegatronT0Model.restore_from(
                restore_path=cfg.model.restore_from_path, trainer=trainer, return_config=True
            )
            model = load_from_nemo(MegatronT0Model, cfg, trainer, t5_cfg, modify_confg_fn=_modify_config)
        else:
            validate_checkpoint_loading_args(cfg.model.pretrained_checkpoint)
            model = load_from_checkpoint_dir(MegatronT0Model, cfg, trainer, modify_confg_fn=_modify_config)
    else:
        if cfg.model.restore_from_path:
            t5_cfg = MegatronT5FinetuneModel.restore_from(
                restore_path=cfg.model.restore_from_path, trainer=trainer, return_config=True
            )
            model = load_from_nemo(MegatronT5FinetuneModel, cfg, trainer, t5_cfg, modify_confg_fn=_modify_config)
        else:
            validate_checkpoint_loading_args(cfg.model.pretrained_checkpoint)
            model = load_from_checkpoint_dir(MegatronT5FinetuneModel, cfg, trainer, modify_confg_fn=_modify_config)

    trainer.fit(model)
    trainer.validate(model)
    if hasattr(cfg.model.data, 'test_ds'):
        trainer.test(model)


if __name__ == '__main__':
    main()