File size: 4,886 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

from examples.nlp.language_modeling.megatron_gpt_eval import RequestDataSet
from omegaconf.omegaconf import OmegaConf, open_dict
from pytorch_lightning import Trainer
from torch.utils.data import DataLoader

from nemo.collections.nlp.models.language_modeling.megatron_retrieval_model import MegatronRetrievalModel
from nemo.collections.nlp.modules.common.transformer.text_generation import LengthParam, SamplingParam
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector
from nemo.core.config import hydra_runner

try:
    from apex.transformer import parallel_state

    HAVE_APEX = True
except (ImportError, ModuleNotFoundError):
    HAVE_APEX = False

"""
This is the script to run RETRO Model text generation.

Usage:
    Assume the model has TP=1, PP=1
    run greedy inference from a nemo file:
        python megatron_retro_eval.py \
            trainer.devices=1 \
            trainer.num_nodes=1 \
            trainer.accelerator=gpu \
            trainer.precision=16 \
            inference.tokens_to_generate=128 \
            inference.greedy=True \
            retro_model_file=path_to_retro_nemo_file \
            tensor_model_parallel_size=1 \
            pipeline_model_parallel_size=1 \
            retrieval_service.faiss_devices='0' \
            retrieval_service.faiss_index=path_to_faiss_index \
            retrieval_service.retrieval_index=path_to_retrieval_dataset \
            retrieval_service.neighbors=20
"""


@hydra_runner(config_path="conf", config_name="megatron_retro_inference")
def main(cfg) -> None:
    trainer = Trainer(strategy=NLPDDPStrategy(), **cfg.trainer)

    model_path = cfg.retro_model_file

    save_restore_connector = NLPSaveRestoreConnector()

    if os.path.isdir(model_path):
        save_restore_connector.model_extracted_dir = model_path

    model_cfg = MegatronRetrievalModel.restore_from(
        model_path, trainer=trainer, return_config=True, save_restore_connector=save_restore_connector,
    )

    with open_dict(model_cfg):
        model_cfg.precision = trainer.precision
        model_cfg.sequence_parallel = False
        model_cfg.activations_checkpoint_granularity = None
        model_cfg.activations_checkpoint_method = None

    model = MegatronRetrievalModel.restore_from(
        model_path, trainer=trainer, save_restore_connector=save_restore_connector, override_config_path=model_cfg,
    )

    length_params: LengthParam = {
        "max_length": cfg.inference.tokens_to_generate,
        "min_length": cfg.inference.min_tokens_to_generate,
    }

    sampling_params: SamplingParam = {
        "use_greedy": cfg.inference.greedy,
        "temperature": cfg.inference.temperature,
        "top_k": cfg.inference.top_k,
        "top_p": cfg.inference.top_p,
        "repetition_penalty": cfg.inference.repetition_penalty,
        "add_BOS": cfg.inference.add_BOS,
        "all_probs": cfg.inference.all_probs,
        "compute_logprob": cfg.inference.compute_logprob,
    }

    # check whether the DDP is initialized
    if parallel_state.is_unitialized():

        def dummy():
            return

        if model.trainer.strategy.launcher is not None:
            model.trainer.strategy.launcher.launch(dummy, trainer=model.trainer)
        model.trainer.strategy.setup_environment()

    config = OmegaConf.to_container(cfg.inference)
    retrieval_service = OmegaConf.to_container(cfg.retrieval_service)
    model.set_inference_config(config, retrieval_service)

    if not cfg.use_predict_method:
        # First method of running text generation, call model.generate method
        response = model.generate(
            inputs=OmegaConf.to_container(cfg.prompts),
            length_params=length_params,
            sampling_params=sampling_params,
            strategy=model.inference_strategy,
        )
    else:
        # Second method of running text generation, call trainer.predict
        ds = RequestDataSet(OmegaConf.to_container(cfg.prompts))
        request_dl = DataLoader(dataset=ds, batch_size=cfg.inference_batch_size)
        response = trainer.predict(model, request_dl)

    print("***************************")
    print(response)
    print("***************************")


if __name__ == '__main__':
    main()