File size: 10,711 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import asyncio
import os
import threading

import torch
from omegaconf import OmegaConf, open_dict
from pytorch_lightning.trainer.trainer import Trainer
from torch.utils.data import DataLoader, Dataset

from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel
from nemo.collections.nlp.modules.common.megatron.megatron_init import fake_initialize_model_parallel
from nemo.collections.nlp.modules.common.megatron_web_server import get_demo
from nemo.collections.nlp.modules.common.text_generation_server import MegatronServer
from nemo.collections.nlp.modules.common.text_generation_utils import generate
from nemo.collections.nlp.modules.common.transformer.text_generation import LengthParam, SamplingParam
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector
from nemo.core.config import hydra_runner
from nemo.utils.app_state import AppState
from nemo.utils.model_utils import inject_model_parallel_rank

try:
    from apex.transformer import parallel_state

    HAVE_APEX = True
except (ImportError, ModuleNotFoundError):
    HAVE_APEX = False

"""
This is the script to run GPT text generation.

Usage:
    Assume the model has TP=1, PP=1 in the following use cases.
    a. run greedy inference from a nemo file:
        python megatron_gpt_eval.py \
            gpt_model_file=PATH_TO_MODEL \
            inference.greedy=True \
            inference.add_BOS=True \
            trainer.devices=1 \
            trainer.num_nodes=1 \
            tensor_model_parallel_size=1 \
            pipeline_model_parallel_size=1 \
            prompts=[prompt1,prompt2]

    b. run greedy inference from a PTL checkpoint file:
        python megatron_gpt_eval.py \
            checkpoint_dir=PATH_TO_CHECKPOINT_FILE \
            checkpoint_name=CHECKPOINT_FILE_NAME \
            hparams_file=HPARAMS_FILE \
            inference.greedy=True \
            inference.add_BOS=True \
            trainer.devices=1 \
            trainer.num_nodes=1 \
            tensor_model_parallel_size=1 \
            pipeline_model_parallel_size=1 \
            prompts=[prompt1,prompt2]

    c. run top_p inference from a nemo file:
        python megatron_gpt_eval.py \
            gpt_model_file=PATH_TO_MODEL \
            inference.greedy=False \
            inference.top_k=0 \
            inference.top_p=0.9 \
            inference.repetition_penalty=1.2 \
            inference.add_BOS=True \
            trainer.devices=1 \
            trainer.num_nodes=1 \
            tensor_model_parallel_size=1 \
            pipeline_model_parallel_size=1 \
            prompts=[prompt1,prompt2]

    d. If you don't need to generate tokens and need model to compute logprobs:
         python megatron_gpt_eval.py \
            gpt_model_file=PATH_TO_MODEL \
            inference.compute_logprob=True \
            trainer.devices=1 \
            trainer.num_nodes=1 \
            tensor_model_parallel_size=1 \
            pipeline_model_parallel_size=1 \
            prompts=[text to get logprob]

    e. Launch the inference server
         python megatron_gpt_eval.py \
            gpt_model_file=PATH_TO_MODEL \
            trainer.devices=1 \
            trainer.num_nodes=1 \
            tensor_model_parallel_size=1 \
            pipeline_model_parallel_size=1 \
            server=True
        
        To send a request to the server, here is one example code:
        ```python
        import json
        import requests

        batch_size = 8
        port_num = 5555
        headers = {"Content-Type": "application/json"}


        def request_data(data):
            resp = requests.put('http://localhost:{}/generate'.format(port_num),
                                data=json.dumps(data),
                                headers=headers)
            sentences = resp.json()['sentences']
            return sentences


        data = {
            "sentences": [""] * batch_size,
            "tokens_to_generate": 300,
            "temperature": 1.0,
            "add_BOS": True,
            "top_k": 0,
            "top_p": 0.9,
            "greedy": False,
            "all_probs": False,
            "repetition_penalty": 1.2,
            "min_tokens_to_generate": 2,
        }

        sentences = request_data(data)
        ```
"""

if not torch.cuda.is_available():
    raise EnvironmentError("GPU is needed for the inference")


class RequestDataSet(Dataset):
    def __init__(self, sentences):
        super().__init__()
        self.sentences = sentences

    def __len__(self,):
        return len(self.sentences)

    def __getitem__(self, idx):
        return self.sentences[idx]


@hydra_runner(config_path="conf", config_name="megatron_gpt_inference")
def main(cfg) -> None:

    # trainer required for restoring model parallel models
    trainer = Trainer(strategy=NLPDDPStrategy(), **cfg.trainer)
    assert (
        cfg.trainer.devices * cfg.trainer.num_nodes
        == cfg.tensor_model_parallel_size * cfg.pipeline_model_parallel_size
    ), "devices * num_nodes should equal tensor_model_parallel_size * pipeline_model_parallel_size"

    if cfg.gpt_model_file:
        save_restore_connector = NLPSaveRestoreConnector()
        if os.path.isdir(cfg.gpt_model_file):
            save_restore_connector.model_extracted_dir = cfg.gpt_model_file

        pretrained_cfg = MegatronGPTModel.restore_from(
            restore_path=cfg.gpt_model_file,
            trainer=trainer,
            return_config=True,
            save_restore_connector=save_restore_connector,
        )
        OmegaConf.set_struct(pretrained_cfg, True)
        with open_dict(pretrained_cfg):
            pretrained_cfg.sequence_parallel = False
            pretrained_cfg.activations_checkpoint_granularity = None
            pretrained_cfg.activations_checkpoint_method = None
            pretrained_cfg.precision = trainer.precision
        model = MegatronGPTModel.restore_from(
            restore_path=cfg.gpt_model_file,
            trainer=trainer,
            override_config_path=pretrained_cfg,
            save_restore_connector=save_restore_connector,
        )
    elif cfg.checkpoint_dir:
        app_state = AppState()
        if cfg.tensor_model_parallel_size > 1 or cfg.pipeline_model_parallel_size > 1:
            app_state.model_parallel_size = cfg.tensor_model_parallel_size * cfg.pipeline_model_parallel_size
            app_state.tensor_model_parallel_size = cfg.tensor_model_parallel_size
            app_state.pipeline_model_parallel_size = cfg.pipeline_model_parallel_size
            (
                app_state.tensor_model_parallel_rank,
                app_state.pipeline_model_parallel_rank,
                app_state.model_parallel_size,
                app_state.data_parallel_size,
                app_state.pipeline_model_parallel_split_rank,
                app_state.virtual_pipeline_model_parallel_rank,
            ) = fake_initialize_model_parallel(
                world_size=app_state.model_parallel_size,
                rank=trainer.global_rank,
                tensor_model_parallel_size_=cfg.tensor_model_parallel_size,
                pipeline_model_parallel_size_=cfg.pipeline_model_parallel_size,
                pipeline_model_parallel_split_rank_=cfg.pipeline_model_parallel_split_rank,
            )
        checkpoint_path = inject_model_parallel_rank(os.path.join(cfg.checkpoint_dir, cfg.checkpoint_name))
        model = MegatronGPTModel.load_from_checkpoint(checkpoint_path, hparams_file=cfg.hparams_file, trainer=trainer)
    else:
        raise ValueError("need at least a nemo file or checkpoint dir")

    model.freeze()

    # Have to turn off activations_checkpoint_method for inference
    try:
        model.model.language_model.encoder.activations_checkpoint_method = None
    except AttributeError:
        pass

    length_params: LengthParam = {
        "max_length": cfg.inference.tokens_to_generate,
        "min_length": cfg.inference.min_tokens_to_generate,
    }

    sampling_params: SamplingParam = {
        "use_greedy": cfg.inference.greedy,
        "temperature": cfg.inference.temperature,
        "top_k": cfg.inference.top_k,
        "top_p": cfg.inference.top_p,
        "repetition_penalty": cfg.inference.repetition_penalty,
        "add_BOS": cfg.inference.add_BOS,
        "all_probs": cfg.inference.all_probs,
        "compute_logprob": cfg.inference.compute_logprob,
    }

    # First method of running text generation, call model.generate method
    response = model.generate(
        inputs=OmegaConf.to_container(cfg.prompts), length_params=length_params, sampling_params=sampling_params
    )

    print("***************************")
    print(response)
    print("***************************")

    # Second method of running text generation, call trainer.predict
    ds = RequestDataSet(OmegaConf.to_container(cfg.prompts))
    request_dl = DataLoader(dataset=ds, batch_size=2)
    config = OmegaConf.to_container(cfg.inference)
    model.set_inference_config(config)
    response = trainer.predict(model, request_dl)

    print("***************************")
    print(response)
    print("***************************")

    # Third method of running text generation, use inference server
    if cfg.server:
        if parallel_state.is_pipeline_first_stage() and parallel_state.get_tensor_model_parallel_rank() == 0:
            if cfg.web_server:
                loop = asyncio.new_event_loop()
                thread = threading.Thread(
                    target=get_demo,
                    daemon=True,
                    args=(cfg.share, cfg.username, cfg.password, cfg.port, cfg.web_port, loop),
                )
                thread.start()
            server = MegatronServer(model.cuda())
            server.run("0.0.0.0", port=cfg.port)

        while True:
            choice = torch.cuda.LongTensor(1)
            torch.distributed.broadcast(choice, 0)
            if choice[0].item() == 0:
                generate(model.cuda())


if __name__ == '__main__':
    main()  # noqa pylint: disable=no-value-for-parameter