File size: 10,711 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import os
import threading
import torch
from omegaconf import OmegaConf, open_dict
from pytorch_lightning.trainer.trainer import Trainer
from torch.utils.data import DataLoader, Dataset
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel
from nemo.collections.nlp.modules.common.megatron.megatron_init import fake_initialize_model_parallel
from nemo.collections.nlp.modules.common.megatron_web_server import get_demo
from nemo.collections.nlp.modules.common.text_generation_server import MegatronServer
from nemo.collections.nlp.modules.common.text_generation_utils import generate
from nemo.collections.nlp.modules.common.transformer.text_generation import LengthParam, SamplingParam
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector
from nemo.core.config import hydra_runner
from nemo.utils.app_state import AppState
from nemo.utils.model_utils import inject_model_parallel_rank
try:
from apex.transformer import parallel_state
HAVE_APEX = True
except (ImportError, ModuleNotFoundError):
HAVE_APEX = False
"""
This is the script to run GPT text generation.
Usage:
Assume the model has TP=1, PP=1 in the following use cases.
a. run greedy inference from a nemo file:
python megatron_gpt_eval.py \
gpt_model_file=PATH_TO_MODEL \
inference.greedy=True \
inference.add_BOS=True \
trainer.devices=1 \
trainer.num_nodes=1 \
tensor_model_parallel_size=1 \
pipeline_model_parallel_size=1 \
prompts=[prompt1,prompt2]
b. run greedy inference from a PTL checkpoint file:
python megatron_gpt_eval.py \
checkpoint_dir=PATH_TO_CHECKPOINT_FILE \
checkpoint_name=CHECKPOINT_FILE_NAME \
hparams_file=HPARAMS_FILE \
inference.greedy=True \
inference.add_BOS=True \
trainer.devices=1 \
trainer.num_nodes=1 \
tensor_model_parallel_size=1 \
pipeline_model_parallel_size=1 \
prompts=[prompt1,prompt2]
c. run top_p inference from a nemo file:
python megatron_gpt_eval.py \
gpt_model_file=PATH_TO_MODEL \
inference.greedy=False \
inference.top_k=0 \
inference.top_p=0.9 \
inference.repetition_penalty=1.2 \
inference.add_BOS=True \
trainer.devices=1 \
trainer.num_nodes=1 \
tensor_model_parallel_size=1 \
pipeline_model_parallel_size=1 \
prompts=[prompt1,prompt2]
d. If you don't need to generate tokens and need model to compute logprobs:
python megatron_gpt_eval.py \
gpt_model_file=PATH_TO_MODEL \
inference.compute_logprob=True \
trainer.devices=1 \
trainer.num_nodes=1 \
tensor_model_parallel_size=1 \
pipeline_model_parallel_size=1 \
prompts=[text to get logprob]
e. Launch the inference server
python megatron_gpt_eval.py \
gpt_model_file=PATH_TO_MODEL \
trainer.devices=1 \
trainer.num_nodes=1 \
tensor_model_parallel_size=1 \
pipeline_model_parallel_size=1 \
server=True
To send a request to the server, here is one example code:
```python
import json
import requests
batch_size = 8
port_num = 5555
headers = {"Content-Type": "application/json"}
def request_data(data):
resp = requests.put('http://localhost:{}/generate'.format(port_num),
data=json.dumps(data),
headers=headers)
sentences = resp.json()['sentences']
return sentences
data = {
"sentences": [""] * batch_size,
"tokens_to_generate": 300,
"temperature": 1.0,
"add_BOS": True,
"top_k": 0,
"top_p": 0.9,
"greedy": False,
"all_probs": False,
"repetition_penalty": 1.2,
"min_tokens_to_generate": 2,
}
sentences = request_data(data)
```
"""
if not torch.cuda.is_available():
raise EnvironmentError("GPU is needed for the inference")
class RequestDataSet(Dataset):
def __init__(self, sentences):
super().__init__()
self.sentences = sentences
def __len__(self,):
return len(self.sentences)
def __getitem__(self, idx):
return self.sentences[idx]
@hydra_runner(config_path="conf", config_name="megatron_gpt_inference")
def main(cfg) -> None:
# trainer required for restoring model parallel models
trainer = Trainer(strategy=NLPDDPStrategy(), **cfg.trainer)
assert (
cfg.trainer.devices * cfg.trainer.num_nodes
== cfg.tensor_model_parallel_size * cfg.pipeline_model_parallel_size
), "devices * num_nodes should equal tensor_model_parallel_size * pipeline_model_parallel_size"
if cfg.gpt_model_file:
save_restore_connector = NLPSaveRestoreConnector()
if os.path.isdir(cfg.gpt_model_file):
save_restore_connector.model_extracted_dir = cfg.gpt_model_file
pretrained_cfg = MegatronGPTModel.restore_from(
restore_path=cfg.gpt_model_file,
trainer=trainer,
return_config=True,
save_restore_connector=save_restore_connector,
)
OmegaConf.set_struct(pretrained_cfg, True)
with open_dict(pretrained_cfg):
pretrained_cfg.sequence_parallel = False
pretrained_cfg.activations_checkpoint_granularity = None
pretrained_cfg.activations_checkpoint_method = None
pretrained_cfg.precision = trainer.precision
model = MegatronGPTModel.restore_from(
restore_path=cfg.gpt_model_file,
trainer=trainer,
override_config_path=pretrained_cfg,
save_restore_connector=save_restore_connector,
)
elif cfg.checkpoint_dir:
app_state = AppState()
if cfg.tensor_model_parallel_size > 1 or cfg.pipeline_model_parallel_size > 1:
app_state.model_parallel_size = cfg.tensor_model_parallel_size * cfg.pipeline_model_parallel_size
app_state.tensor_model_parallel_size = cfg.tensor_model_parallel_size
app_state.pipeline_model_parallel_size = cfg.pipeline_model_parallel_size
(
app_state.tensor_model_parallel_rank,
app_state.pipeline_model_parallel_rank,
app_state.model_parallel_size,
app_state.data_parallel_size,
app_state.pipeline_model_parallel_split_rank,
app_state.virtual_pipeline_model_parallel_rank,
) = fake_initialize_model_parallel(
world_size=app_state.model_parallel_size,
rank=trainer.global_rank,
tensor_model_parallel_size_=cfg.tensor_model_parallel_size,
pipeline_model_parallel_size_=cfg.pipeline_model_parallel_size,
pipeline_model_parallel_split_rank_=cfg.pipeline_model_parallel_split_rank,
)
checkpoint_path = inject_model_parallel_rank(os.path.join(cfg.checkpoint_dir, cfg.checkpoint_name))
model = MegatronGPTModel.load_from_checkpoint(checkpoint_path, hparams_file=cfg.hparams_file, trainer=trainer)
else:
raise ValueError("need at least a nemo file or checkpoint dir")
model.freeze()
# Have to turn off activations_checkpoint_method for inference
try:
model.model.language_model.encoder.activations_checkpoint_method = None
except AttributeError:
pass
length_params: LengthParam = {
"max_length": cfg.inference.tokens_to_generate,
"min_length": cfg.inference.min_tokens_to_generate,
}
sampling_params: SamplingParam = {
"use_greedy": cfg.inference.greedy,
"temperature": cfg.inference.temperature,
"top_k": cfg.inference.top_k,
"top_p": cfg.inference.top_p,
"repetition_penalty": cfg.inference.repetition_penalty,
"add_BOS": cfg.inference.add_BOS,
"all_probs": cfg.inference.all_probs,
"compute_logprob": cfg.inference.compute_logprob,
}
# First method of running text generation, call model.generate method
response = model.generate(
inputs=OmegaConf.to_container(cfg.prompts), length_params=length_params, sampling_params=sampling_params
)
print("***************************")
print(response)
print("***************************")
# Second method of running text generation, call trainer.predict
ds = RequestDataSet(OmegaConf.to_container(cfg.prompts))
request_dl = DataLoader(dataset=ds, batch_size=2)
config = OmegaConf.to_container(cfg.inference)
model.set_inference_config(config)
response = trainer.predict(model, request_dl)
print("***************************")
print(response)
print("***************************")
# Third method of running text generation, use inference server
if cfg.server:
if parallel_state.is_pipeline_first_stage() and parallel_state.get_tensor_model_parallel_rank() == 0:
if cfg.web_server:
loop = asyncio.new_event_loop()
thread = threading.Thread(
target=get_demo,
daemon=True,
args=(cfg.share, cfg.username, cfg.password, cfg.port, cfg.web_port, loop),
)
thread.start()
server = MegatronServer(model.cuda())
server.run("0.0.0.0", port=cfg.port)
while True:
choice = torch.cuda.LongTensor(1)
torch.distributed.broadcast(choice, 0)
if choice[0].item() == 0:
generate(model.cuda())
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|