File size: 8,021 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

r"""
Conversion script to convert PTL checkpoints into nemo checkpoint.
  Example to run this conversion script:
    python -m torch.distributed.launch --nproc_per_node=<tensor_model_parallel_size> * <pipeline_model_parallel_size> \
     megatron_ckpt_to_nemo.py \
     --checkpoint_folder <path_to_PTL_checkpoints_folder> \
     --checkpoint_name <checkpoint_name> \
     --nemo_file_path <path_to_output_nemo_file> \
     --tensor_model_parallel_size <tensor_model_parallel_size> \
     --pipeline_model_parallel_size <pipeline_model_parallel_size>
"""

import os
from argparse import ArgumentParser

import torch
from apex.transformer import parallel_state
from pytorch_lightning.plugins.environments import TorchElasticEnvironment
from pytorch_lightning.trainer.trainer import Trainer

from nemo.collections.nlp.models.language_modeling.megatron_bart_model import MegatronBARTModel
from nemo.collections.nlp.models.language_modeling.megatron_bert_model import MegatronBertModel
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel
from nemo.collections.nlp.models.language_modeling.megatron_retrieval_model import MegatronRetrievalModel
from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model
from nemo.collections.nlp.models.machine_translation.megatron_nmt_model import MegatronNMTModel
from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector
from nemo.utils import AppState, logging
from nemo.utils.distributed import initialize_distributed
from nemo.utils.model_utils import inject_model_parallel_rank


def get_args():
    parser = ArgumentParser()
    parser.add_argument(
        "--checkpoint_folder",
        type=str,
        default=None,
        required=True,
        help="Path to PTL checkpoints saved during training. Ex: /raid/nemo_experiments/megatron_gpt/checkpoints",
    )
    parser.add_argument(
        "--checkpoint_name",
        type=str,
        default=None,
        required=True,
        help="Name of checkpoint to be used. Ex: megatron_gpt--val_loss=6.34-step=649-last.ckpt",
    )

    parser.add_argument(
        "--hparams_file",
        type=str,
        default=None,
        required=False,
        help="Path config for restoring. It's created during training and may need to be modified during restore if restore environment is different than training. Ex: /raid/nemo_experiments/megatron_gpt/hparams.yaml",
    )
    parser.add_argument("--nemo_file_path", type=str, default=None, required=True, help="Path to output .nemo file.")
    parser.add_argument("--gpus_per_node", type=int, required=True, default=None)
    parser.add_argument("--tensor_model_parallel_size", type=int, required=True, default=None)
    parser.add_argument("--pipeline_model_parallel_size", type=int, required=True, default=None)
    parser.add_argument(
        "--pipeline_model_parallel_split_rank",
        type=int,
        required=False,
        default=None,
        help="If pipeline parallel size > 1, this is the rank at which the encoder ends and the decoder begins.",
    )
    parser.add_argument(
        "--model_type", type=str, required=True, default="gpt", choices=["gpt", "t5", "bert", "nmt", "bart", "retro"]
    )
    parser.add_argument("--local_rank", type=int, required=False, default=os.getenv('LOCAL_RANK', -1))
    parser.add_argument("--bcp", action="store_true", help="Whether on BCP platform")

    args = parser.parse_args()
    return args


def convert(local_rank, rank, world_size, args):

    app_state = AppState()
    app_state.data_parallel_rank = 0
    num_nodes = world_size // args.gpus_per_node
    if args.bcp:
        trainer = Trainer(
            devices=args.gpus_per_node, num_nodes=num_nodes, accelerator='gpu', plugins=[TorchElasticEnvironment()]
        )
    else:
        trainer = Trainer(devices=args.gpus_per_node, num_nodes=num_nodes, accelerator='gpu')

    app_state.pipeline_model_parallel_size = args.pipeline_model_parallel_size
    app_state.tensor_model_parallel_size = args.tensor_model_parallel_size
    # Auto set split rank for T5, BART, NMT if split rank is None.
    if args.pipeline_model_parallel_size > 1 and args.model_type in ['t5', 'bart', 'nmt']:
        if args.pipeline_model_parallel_split_rank is not None:
            app_state.pipeline_model_parallel_split_rank = args.pipeline_model_parallel_split_rank
        else:
            if args.pipeline_model_parallel_size % 2 != 0:
                raise ValueError(
                    f"Pipeline model parallel size {args.pipeline_model_parallel_size} must be even if split rank is not specified."
                )
            else:
                # If split rank is not set, then we set it to be pipeline_model_parallel_size // 2 - this is because in most cases we have the same number of enc/dec layers.
                app_state.pipeline_model_parallel_split_rank = args.pipeline_model_parallel_size // 2
    else:
        app_state.pipeline_model_parallel_split_rank = None

    app_state.model_parallel_size = app_state.tensor_model_parallel_size * app_state.pipeline_model_parallel_size

    parallel_state.initialize_model_parallel(
        tensor_model_parallel_size_=app_state.tensor_model_parallel_size,
        pipeline_model_parallel_size_=app_state.pipeline_model_parallel_size,
        pipeline_model_parallel_split_rank_=app_state.pipeline_model_parallel_split_rank,
    )

    app_state.pipeline_model_parallel_rank = parallel_state.get_pipeline_model_parallel_rank()
    app_state.tensor_model_parallel_rank = parallel_state.get_tensor_model_parallel_rank()

    # inject model parallel rank
    checkpoint_path = inject_model_parallel_rank(os.path.join(args.checkpoint_folder, args.checkpoint_name))

    logging.info(
        f'rank: {rank}, local_rank: {local_rank}, is loading checkpoint: {checkpoint_path} for tp_rank: {app_state.tensor_model_parallel_rank} and pp_rank: {app_state.pipeline_model_parallel_rank}'
    )

    if args.model_type == 'gpt':
        model = MegatronGPTModel.load_from_checkpoint(checkpoint_path, hparams_file=args.hparams_file, trainer=trainer)
    elif args.model_type == 'bert':
        model = MegatronBertModel.load_from_checkpoint(
            checkpoint_path, hparams_file=args.hparams_file, trainer=trainer
        )
    elif args.model_type == 't5':
        model = MegatronT5Model.load_from_checkpoint(checkpoint_path, hparams_file=args.hparams_file, trainer=trainer)
    elif args.model_type == 'bart':
        model = MegatronBARTModel.load_from_checkpoint(
            checkpoint_path, hparams_file=args.hparams_file, trainer=trainer
        )
    elif args.model_type == 'nmt':
        model = MegatronNMTModel.load_from_checkpoint(checkpoint_path, hparams_file=args.hparams_file, trainer=trainer)
    elif args.model_type == 'retro':
        model = MegatronRetrievalModel.load_from_checkpoint(
            checkpoint_path, hparams_file=args.hparams_file, trainer=trainer
        )
    model._save_restore_connector = NLPSaveRestoreConnector()

    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    model.save_to(args.nemo_file_path)

    logging.info(f'NeMo model saved to: {args.nemo_file_path}')


if __name__ == '__main__':
    args = get_args()

    local_rank, rank, world_size = initialize_distributed(args)

    convert(local_rank, rank, world_size, args)