File size: 7,453 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
name: megatron_bert
restore_from_path: null # used when starting from a .nemo file
trainer:
devices: 2
num_nodes: 1
accelerator: gpu
precision: 16
logger: False # logger provided by exp_manager
enable_checkpointing: False
replace_sampler_ddp: False
max_epochs: -1 # PTL default. In practice we don't usually train for more than 1 epoch.
max_steps: 100000 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches
log_every_n_steps: 10
val_check_interval: 100
limit_val_batches: 50
limit_test_batches: 500
accumulate_grad_batches: 1
gradient_clip_val: 1.0
benchmark: False
exp_manager:
explicit_log_dir: null
exp_dir: null
name: megatron_bert
create_wandb_logger: False
wandb_logger_kwargs:
project: null
name: null
resume_if_exists: True
resume_ignore_no_checkpoint: True
create_checkpoint_callback: True
checkpoint_callback_params:
monitor: val_loss
save_top_k: 10
mode: min
always_save_nemo: False # saves nemo file during validation, not implemented for model parallel
filename: 'megatron_bert--{val_loss:.2f}-{step}-{consumed_samples}'
model_parallel_size: ${multiply:${model.tensor_model_parallel_size}, ${model.pipeline_model_parallel_size}}
model:
# model parallelism
micro_batch_size: 4
global_batch_size: 8
tensor_model_parallel_size: 1
pipeline_model_parallel_size: 1
virtual_pipeline_model_parallel_size: null
# model architecture
encoder_seq_length: 512
max_position_embeddings: ${.encoder_seq_length}
num_layers: 12
hidden_size: 768
ffn_hidden_size: 3072 # Transformer FFN hidden size. Usually 4 * hidden_size.
num_attention_heads: 12
init_method_std: 0.02 # Standard deviation of the zero mean normal distribution used for weight initialization.')
hidden_dropout: 0.1 # Dropout probability for hidden state transformer.
kv_channels: null # Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if null
apply_query_key_layer_scaling: True # scale Q * K^T by 1 / layer-number.
layernorm_epsilon: 1e-5
make_vocab_size_divisible_by: 128 # Pad the vocab size to be divisible by this value for computation efficiency.
pre_process: True # add embedding
post_process: True # add pooler
bert_binary_head: True # BERT binary head
tokenizer:
library: 'megatron'
type: 'BertWordPieceLowerCase'
model: null
vocab_file: null
merge_file: null
# precision
native_amp_init_scale: 4294967296 # 2 ** 32
native_amp_growth_interval: 1000
fp32_residual_connection: False # Move residual connections to fp32
fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16
# Megatron O2-style half-precision
megatron_amp_O2: False # Enable O2-level automatic mixed precision using main parameters
grad_allreduce_chunk_size_mb: 125
grad_div_ar_fusion: False
# miscellaneous
seed: 1234
use_cpu_initialization: False # Init weights on the CPU (slow for large models)
onnx_safe: False # Use work-arounds for known problems with Torch ONNX exporter.
gradient_as_bucket_view: True # PyTorch DDP argument. Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)
## Activation Checkpointing
# NeMo Megatron supports 'selective' activation checkpointing where only the memory intensive part of attention is checkpointed.
# These memory intensive activations are also less compute intensive which makes activation checkpointing more efficient for LLMs (20B+).
# See Reducing Activation Recomputation in Large Transformer Models: https://arxiv.org/abs/2205.05198 for more details.
# 'full' will checkpoint the entire transformer layer.
activations_checkpoint_granularity: null # 'selective' or 'full'
activations_checkpoint_method: null # 'uniform', 'block'
# 'uniform' divides the total number of transformer layers and checkpoints the input activation
# of each chunk at the specified granularity. When used with 'selective', 'uniform' checkpoints all attention blocks in the model.
# 'block' checkpoints the specified number of layers per pipeline stage at the specified granularity
activations_checkpoint_num_layers: null
# when using 'uniform' this creates groups of transformer layers to checkpoint. Usually set to 1. Increase to save more memory.
# when using 'block' this this will checkpoint the first activations_checkpoint_num_layers per pipeline stage.
num_micro_batches_with_partial_activation_checkpoints: null
# This feature is valid only when used with pipeline-model-parallelism.
# When an integer value is provided, it sets the number of micro-batches where only a partial number of Transformer layers get checkpointed
# and recomputed within a window of micro-batches. The rest of micro-batches in the window checkpoint all Transformer layers. The size of window is
# set by the maximum outstanding micro-batch backpropagations, which varies at different pipeline stages. The number of partial layers to checkpoint
# per micro-batch is set by 'activations_checkpoint_num_layers' with 'activations_checkpoint_method' of 'block'.
# This feature enables using activation checkpoint at a fraction of micro-batches up to the point of full GPU memory usage.
activations_checkpoint_layers_per_pipeline: null
# This feature is valid only when used with pipeline-model-parallelism.
# When an integer value (rounded down when float is given) is provided, it sets the number of Transformer layers to skip checkpointing at later
# pipeline stages. For example, 'activations_checkpoint_layers_per_pipeline' of 3 makes pipeline stage 1 to checkpoint 3 layers less than
# stage 0 and stage 2 to checkpoint 6 layers less stage 0, and so on. This is possible because later pipeline stage
# uses less GPU memory with fewer outstanding micro-batch backpropagations. Used with 'num_micro_batches_with_partial_activation_checkpoints',
# this feature removes most of activation checkpoints at the last pipeline stage, which is the critical execution path.
sequence_parallel: False
data:
# Path to data must be specified by the user.
# can override from the CLI: "model.data.data_prefix=[.5,/raid/data/pile/my-gpt3_00_text_document,.5,/raid/data/pile/my-gpt3_01_text_document]",
# Or see example below:
# data_prefix:
# - .5
# - /raid/data/pile/my-gpt3_00_text_document
# - .5
# - /raid/data/pile/my-gpt3_01_text_document
data_prefix: ???
index_mapping_dir: null # path to save index mapping .npy files, by default will save in the same location as data_prefix
data_impl: mmap
splits_string: 900,50,50
seq_length: ${model.encoder_seq_length}
skip_warmup: True
num_workers: 0
dataloader_type: single # cyclic
reset_position_ids: False # Reset position ids after end-of-document token
reset_attention_mask: False # Reset attention mask after end-of-document token
eod_mask_loss: False # Mask loss for the end of document tokens
masked_lm_prob: 0.15 # Probability of replacing a token with mask.
short_seq_prob: 0.1 # Probability of producing a short sequence.
optim:
name: fused_adam
lr: 2e-4
weight_decay: 0.01
betas:
- 0.9
- 0.98
sched:
name: CosineAnnealing
warmup_steps: 500
constant_steps: 50000
min_lr: 2e-5
|