File size: 12,137 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import pickle
import random
import tarfile
from glob import glob
from typing import List, Tuple
from joblib import Parallel, delayed
from tqdm import tqdm
from transformers import AutoTokenizer
import nemo.collections.nlp.data.text_normalization.constants as constants
from nemo.collections.nlp.data.text_normalization.decoder_dataset import TextNormalizationDecoderDataset
from nemo.utils import logging
"""
The script builds tar files for Tarred TextNormalizationDecoderDataset
See `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization/nn_text_normalization.rst>`
for more details on data format, and en/data_processing.py on how to pre-process the data before tarring.
To run the script, use:
python create_tarred_dataset.py \
--input_files = "train_processed/output-00099-of-00100" \
--input_files = "train_processed/output-00098-of-00100" \
--lang = "en" \
--out_dir="TARRED_DATA_OUTPUT_DIR"
See the argparse help for more arguments.
"""
def _preprocess_file(input_file: str) -> List[Tuple[List[str]]]:
"""
Performs initial preprocessing, i.e., urls formatting, removal of "_trans" from Ru set
Args:
input_file: path to a file in google TN format
Returns:
Processed data. Each element is a Tuple(List[semiotic classes], List[written words], List[spoken words])
"""
print(f"Reading and running initial pre-processing of {input_file}...")
cur_split = []
with open(input_file, 'r', encoding='utf-8') as f:
# Loop through each line of the file
cur_classes, cur_tokens, cur_outputs = [], [], []
for linectx, line in tqdm(enumerate(f)):
es = line.strip().split('\t')
if len(es) == 2 and es[0] == '<eos>':
cur_split.append((cur_classes, cur_tokens, cur_outputs))
# Reset
cur_classes, cur_tokens, cur_outputs = [], [], []
continue
assert len(es) == 3
cur_classes.append(es[0])
cur_tokens.append(es[1])
cur_outputs.append(es[2])
return cur_split
def _write_batches_to_tarfiles(
input_file: str,
tokenizer: AutoTokenizer,
tokenizer_name: str,
mode: str,
lang: str,
max_seq_len: int,
batch_size: int,
out_dir: str,
num_batches_per_tarfile: int,
decoder_data_augmentation: bool = False,
):
"""
Creates tar files for the input file, i.e.:
1. Creates a TextNormalizationDecoderDataset from the input file
2. Constructs batches of size `batch_size`
3. Saves each created batch to a pickle file and then adds `num_batches_per_tarfile`
of the pickle files to a tarfile.
Args:
input_file: path to cleaned data file. See en/data_processing.py for cleaning.
tokenizer: tokenizer
tokenizer_name: the name of the tokenizer, usually corresponds to the pre-trained LM
mode: model training mode
max_seq_len: maximum length of the sequence (examples that are longer will be discarded)
batch_size: batch size
out_dir: path to output directory
num_batches_per_tarfile: number of batches saved in each tar file
decoder_data_augmentation: Set to True to enable data augmentation for the decoder model
lang: data language
"""
dataset = TextNormalizationDecoderDataset(
input_file=input_file,
raw_instances=_preprocess_file(input_file=input_file),
tokenizer=tokenizer,
tokenizer_name=tokenizer_name,
mode=mode,
max_len=max_seq_len,
decoder_data_augmentation=decoder_data_augmentation,
lang=lang,
use_cache=False,
max_insts=-1,
do_tokenize=False,
initial_shuffle=True,
)
dataset.batchify(batch_size)
file_name = os.path.basename(input_file)
tar_file_ctr = 0
tar_file_path = os.path.join(
out_dir, '%s-batches.%d.%d.%d.tar' % (file_name, batch_size, max_seq_len, tar_file_ctr)
)
tar_file_ptr = tarfile.open(tar_file_path, 'w')
total_batch_ctr = 0
batch_ctr = 0
for batch in dataset.batches:
total_batch_ctr += 1
batch_ctr += 1
pickle_file = os.path.join(out_dir, '%s-batch-%d.pkl' % (file_name, total_batch_ctr))
pickle.dump(batch, open(pickle_file, 'wb'))
tar_file_ptr.add(pickle_file)
os.remove(pickle_file)
if batch_ctr == num_batches_per_tarfile:
tar_file_ctr += 1
tar_file_ptr.close()
tar_file_path = os.path.join(
out_dir, f'%s-batches.%d.%d.%d.tar' % (file_name, batch_size, max_seq_len, tar_file_ctr)
)
tar_file_ptr = tarfile.open(tar_file_path, 'w',)
batch_ctr = 0
# return tar files paths that have batches remaining
remainder_tar_file_path = tar_file_ptr.name
tar_file_ptr.close()
return total_batch_ctr, remainder_tar_file_path
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='(Inverse) Text Normalization tarred dataset creation')
parser.add_argument('--transformer_name', type=str, default="t5-small", help='Name of the pretrained LM.')
parser.add_argument('--mode', type=str, default='tn', choices=constants.MODES, help='(I)TN model training mode.')
parser.add_argument('--lang', type=str, default='en', choices=constants.SUPPORTED_LANGS, help='language.')
parser.add_argument(
'--decoder_data_augmentation',
action="store_true",
help='Set to True to use data augmentation for the decoder model.',
)
parser.add_argument(
'-in',
'--input_files',
action='append',
required=True,
help="Example: -in train_processed/output-00099-of-00100 -in train_processed/output-00098-of-00100",
)
parser.add_argument('--out_dir', type=str, required=True, help='Path to store dataloader and tokenizer models.')
parser.add_argument(
'--max_seq_length', type=int, default=80, help='Maximum sequence length, longer examples will be discarded.'
)
parser.add_argument('--min_seq_length', type=int, default=1, help='Minimum sequence length.')
parser.add_argument(
'--num_batches_per_tarfile',
type=int,
default=2,
help='Number batches, i.e., pickle files, included in a single .tar file.',
)
parser.add_argument('--n_jobs', type=int, default=-2, help='The maximum number of concurrently running jobs.')
parser.add_argument(
'--batch_size',
type=int,
default=16,
help='Batch size, i.e., number of examples in a single pickle file. This batch size will override the training size.',
)
parser.add_argument(
'--factor', default=8, type=int, help='The final number of tar files will be divisible by the "factor" value'
)
args = parser.parse_args()
# check if tar files exist
if os.path.exists(args.out_dir):
tar_files_in_out_dir = glob(f'{args.out_dir}/*.tar')
if tar_files_in_out_dir:
raise ValueError(
f'Tar files detected in {args.out_dir}. Delete the files to re-construct the dataset in the same directory.'
)
else:
os.makedirs(args.out_dir)
world_size = 1
tokenizer = AutoTokenizer.from_pretrained(args.transformer_name)
results_list = Parallel(n_jobs=args.n_jobs)(
delayed(_write_batches_to_tarfiles)(
input_file=input_file,
tokenizer=tokenizer,
tokenizer_name=args.transformer_name,
mode=args.mode,
lang=args.lang,
batch_size=args.batch_size,
max_seq_len=args.max_seq_length,
decoder_data_augmentation=args.decoder_data_augmentation,
out_dir=args.out_dir,
num_batches_per_tarfile=args.num_batches_per_tarfile,
)
for input_file in args.input_files
)
total_batches = sum([batch_count for batch_count, _ in results_list])
# save batches from tar files containing the left over batches (if there's enough batches)
remainder_tar_file_ctr = 0
remainder_tar_file_path = os.path.join(
args.out_dir, f'remainder-batches.tokens.{args.batch_size}.tar_file_{remainder_tar_file_ctr}.tar'
)
remainder_tar_file_ptr = tarfile.open(remainder_tar_file_path, 'w')
batch_in_tar_ctr = 0
for _, tar_file_path in results_list:
tar_file_ptr = tarfile.open(tar_file_path, 'r')
for member in tar_file_ptr.getmembers():
remainder_tar_file_ptr.addfile(member, tar_file_ptr.extractfile(member.name))
batch_in_tar_ctr += 1
if batch_in_tar_ctr == args.num_batches_per_tarfile:
remainder_tar_file_ctr += 1
remainder_tar_file_ptr.close()
remainder_tar_file_path = os.path.join(
args.out_dir, f'remainder-batches.tokens.{args.batch_size}.tar_file_{remainder_tar_file_ctr}.tar',
)
remainder_tar_file_ptr = tarfile.open(remainder_tar_file_path, 'w',)
batch_in_tar_ctr = 0
tar_file_ptr.close()
os.remove(tar_file_path)
# log the number of batches remaining as they will be discarded
num_batches_discarded = len(remainder_tar_file_ptr.getmembers())
remainder_tar_file_ptr.close()
os.remove(remainder_tar_file_path)
tar_file_paths = glob(f'{args.out_dir}/*.tar')
if args.factor != 1:
num_tar_files = len(tar_file_paths)
num_tars_to_drop = num_tar_files % args.factor
num_batches_discarded += num_tars_to_drop * args.num_batches_per_tarfile
random.shuffle(tar_file_paths)
for _ in range(num_tars_to_drop):
os.remove(tar_file_paths.pop(-1))
total_batches -= num_batches_discarded
logging.info(f'Number of batches discarded: {num_batches_discarded}, total batches kept: {total_batches}')
# dump metadata to json
metadata = {}
metadata['num_batches'] = total_batches
# rename tar files so they can be more easily used with CLI and YAML
file_name = f'{args.mode}.{args.batch_size}_bs.{args.num_batches_per_tarfile}_b_per_tar.{args.max_seq_length}_len'
for index, path in enumerate(tar_file_paths):
os.rename(path, os.path.join(args.out_dir, f'{file_name}.{index}.tar'))
text_tar_filepaths = f'{file_name}._OP_0..{index}_CL_.tar'
logging.info(f'Files for brace expansion: "{text_tar_filepaths}"')
metadata['text_tar_filepaths'] = text_tar_filepaths
# add tar files to metadata
tar_file_paths = glob(f'{args.out_dir}/*.tar')
metadata['tar_files'] = tar_file_paths
metadata_path = os.path.join(args.out_dir, 'metadata.json')
json.dump(metadata, open(metadata_path, 'w'))
num_tar_files = len(tar_file_paths)
if num_tar_files < world_size:
raise ValueError(
(
f'Number of tar files found: {num_tar_files} is less than world size: {world_size}. '
f'There should be at least one tar file per GPU (ideally many tar files per GPU). '
f'This may be due to dataset size. '
f'Decrease num_batches_per_tarfile or num_tokens_per_batch to increase the number of tarfiles. '
f'Also using shard_strategy=replicate will use all available tarfiles for every GPU. '
)
)
|