File size: 7,249 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script contains an example of how to train and test dialogue models in NeMo.
***Setting the configs***
The model and the PT trainer are defined in a config file that declares multiple important sections.
The most important ones are:
model: All arguments that are related to the Model - model, loss, optimizer,
schedulers, and datasets/data loaders.
trainer: Any argument to be passed to PyTorch Lightning including number of epochs, number of GPUs,
precision level, etc.
This script uses the `/examples/nlp/dialogue_state_tracking/conf/dialog_config.yaml` config file
by default. You may update the config file from the file directly. The other option is to set another config file via command-line arguments by `--config-name=CONFIG_FILE_PATH'.
***Model Training***
python dialogue.py
do_training=True
model.dataset.data_dir=<DATA_DIR_WITH_JSON_DATA>
model.dataset.dialogues_example_dir=<DAT_DIR_FOR_CACHING_INTERMEDIATE_AND_SAVING_PREDICTIONS>
model.dataset.task=<TASK - see conf/dialogue_config.yaml for full list> e.g. sgd
model.language_model.pretrained_model_name=<TASK - see conf/dialogue_config.yaml for full list> e.g. gpt2
trainer.devices=[<DEVICE_IDS_TO_USE>]
***Model Evaluation***
command as above, change do_training=False
"""
import os
import pytorch_lightning as pl
from omegaconf import DictConfig, OmegaConf
from nemo.collections.nlp.models.dialogue.dialogue_gpt_classification_model import DialogueGPTClassificationModel
from nemo.collections.nlp.models.dialogue.dialogue_gpt_generation_model import DialogueGPTGenerationModel
from nemo.collections.nlp.models.dialogue.dialogue_nearest_neighbour_model import DialogueNearestNeighbourModel
from nemo.collections.nlp.models.dialogue.dialogue_s2s_generation_model import DialogueS2SGenerationModel
from nemo.collections.nlp.models.dialogue.dialogue_zero_shot_intent_model import DialogueZeroShotIntentModel
from nemo.collections.nlp.models.dialogue.intent_slot_classification_model import IntentSlotClassificationModel
from nemo.collections.nlp.models.dialogue.sgdqa_model import SGDQAModel
from nemo.collections.nlp.modules.common.megatron.megatron_utils import compute_model_parallel_rank
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.app_state import AppState
from nemo.utils.exp_manager import exp_manager
@hydra_runner(config_path="conf", config_name="dialogue_config")
def main(cfg: DictConfig) -> None:
pl.seed_everything(42)
logging.info(f'Config: {OmegaConf.to_yaml(cfg)}')
try:
strategy = NLPDDPStrategy(no_ddp_communication_hook=True, find_unused_parameters=True,)
except (ImportError, ModuleNotFoundError):
strategy = None
trainer = pl.Trainer(**cfg.trainer, strategy=strategy)
exp_manager(trainer, cfg.get("exp_manager", None))
app_state = AppState()
app_state.data_parallel_size = cfg.model.data_parallel_size
if cfg.model.tensor_model_parallel_size > 1:
app_state.model_parallel_size = cfg.model.tensor_model_parallel_size
app_state.tensor_model_parallel_rank = compute_model_parallel_rank(
trainer.local_rank, app_state.model_parallel_size
)
if 'bert' in cfg.model.language_model.pretrained_model_name:
if cfg.model.dataset.task == 'sgd':
if cfg.model.original_nemo_checkpoint is not None:
model_class = DialogueZeroShotIntentModel
else:
model_class = SGDQAModel
elif cfg.model.dataset.task in ['zero_shot', 'design']:
model_class = DialogueZeroShotIntentModel
else:
model_class = IntentSlotClassificationModel
elif 'gpt' in cfg.model.language_model.pretrained_model_name.lower():
if cfg.model.dataset.task in ['ms_marco', 'mellon_qa']:
model_class = DialogueGPTGenerationModel
else:
model_class = DialogueGPTClassificationModel
elif (
'bart' in cfg.model.language_model.pretrained_model_name.lower()
or 't5' in cfg.model.language_model.pretrained_model_name.lower()
):
# please use bf16/32 with t5-large and above
# see https://github.com/huggingface/transformers/pull/10956
model_class = DialogueS2SGenerationModel
elif 'sentence-transformers' in cfg.model.language_model.pretrained_model_name.lower():
model_class = DialogueNearestNeighbourModel
if cfg.pretrained_model or (cfg.model.nemo_path and os.path.exists(cfg.model.nemo_path)):
if cfg.pretrained_model:
logging.info(f'Loading pretrained model {cfg.pretrained_model}')
model = model_class.from_pretrained(cfg.pretrained_model)
else:
logging.info(f'Restoring model from {cfg.model.nemo_path}')
model = model_class.restore_from(cfg.model.nemo_path, trainer=trainer)
if cfg.do_training:
model.setup_training_data(train_data_config=cfg.model.train_ds)
model.setup_multiple_validation_data(val_data_config=cfg.model.validation_ds)
else:
logging.info(f'Config: {OmegaConf.to_yaml(cfg)}')
model = model_class(cfg.model, trainer=trainer)
if cfg.do_training:
trainer.fit(model)
if cfg.model.nemo_path:
if not os.path.exists(cfg.model.nemo_path):
model.save_to(cfg.model.nemo_path)
else:
updated_nemo_path = cfg.model.nemo_path.replace(".nemo", "_new.nemo")
logging.warning("nemo path exists, saving at {} instead".format(updated_nemo_path))
model.save_to(updated_nemo_path)
else:
data_dir = cfg.model.dataset.get('data_dir', None)
dialogues_example_dir = cfg.model.dataset.get('dialogues_example_dir', None)
if data_dir is None or dialogues_example_dir is None:
raise ValueError('No dataset directory provided. Skipping evaluation. ')
elif not os.path.exists(data_dir):
raise ValueError(f'{data_dir} is not found, skipping evaluation on the test set.')
else:
if hasattr(model, "update_data_dirs"):
model.update_data_dirs(data_dir=data_dir, dialogues_example_dir=dialogues_example_dir)
model._cfg.dataset = cfg.model.dataset
if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.ds_item is not None:
model.setup_multiple_test_data(test_data_config=cfg.model.test_ds)
trainer.test(model)
if __name__ == '__main__':
main()
|