File size: 7,249 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This script contains an example of how to train and test dialogue models in NeMo.

***Setting the configs***
The model and the PT trainer are defined in a config file that declares multiple important sections.
The most important ones are:
    model: All arguments that are related to the Model - model, loss, optimizer,
            schedulers, and datasets/data loaders.
    trainer: Any argument to be passed to PyTorch Lightning including number of epochs, number of GPUs,
            precision level, etc.

This script uses the `/examples/nlp/dialogue_state_tracking/conf/dialog_config.yaml` config file
by default. You may update the config file from the file directly. The other option is to set another config file via command-line arguments by `--config-name=CONFIG_FILE_PATH'.


***Model Training***
    python dialogue.py
    do_training=True
    model.dataset.data_dir=<DATA_DIR_WITH_JSON_DATA>
    model.dataset.dialogues_example_dir=<DAT_DIR_FOR_CACHING_INTERMEDIATE_AND_SAVING_PREDICTIONS>
    model.dataset.task=<TASK - see conf/dialogue_config.yaml for full list> e.g. sgd
    model.language_model.pretrained_model_name=<TASK - see conf/dialogue_config.yaml for full list> e.g. gpt2
    trainer.devices=[<DEVICE_IDS_TO_USE>]

***Model Evaluation***
    command as above, change do_training=False
"""

import os

import pytorch_lightning as pl
from omegaconf import DictConfig, OmegaConf

from nemo.collections.nlp.models.dialogue.dialogue_gpt_classification_model import DialogueGPTClassificationModel
from nemo.collections.nlp.models.dialogue.dialogue_gpt_generation_model import DialogueGPTGenerationModel
from nemo.collections.nlp.models.dialogue.dialogue_nearest_neighbour_model import DialogueNearestNeighbourModel
from nemo.collections.nlp.models.dialogue.dialogue_s2s_generation_model import DialogueS2SGenerationModel
from nemo.collections.nlp.models.dialogue.dialogue_zero_shot_intent_model import DialogueZeroShotIntentModel
from nemo.collections.nlp.models.dialogue.intent_slot_classification_model import IntentSlotClassificationModel
from nemo.collections.nlp.models.dialogue.sgdqa_model import SGDQAModel
from nemo.collections.nlp.modules.common.megatron.megatron_utils import compute_model_parallel_rank
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.app_state import AppState
from nemo.utils.exp_manager import exp_manager


@hydra_runner(config_path="conf", config_name="dialogue_config")
def main(cfg: DictConfig) -> None:
    pl.seed_everything(42)
    logging.info(f'Config: {OmegaConf.to_yaml(cfg)}')

    try:
        strategy = NLPDDPStrategy(no_ddp_communication_hook=True, find_unused_parameters=True,)
    except (ImportError, ModuleNotFoundError):
        strategy = None

    trainer = pl.Trainer(**cfg.trainer, strategy=strategy)

    exp_manager(trainer, cfg.get("exp_manager", None))

    app_state = AppState()
    app_state.data_parallel_size = cfg.model.data_parallel_size
    if cfg.model.tensor_model_parallel_size > 1:
        app_state.model_parallel_size = cfg.model.tensor_model_parallel_size
        app_state.tensor_model_parallel_rank = compute_model_parallel_rank(
            trainer.local_rank, app_state.model_parallel_size
        )

    if 'bert' in cfg.model.language_model.pretrained_model_name:
        if cfg.model.dataset.task == 'sgd':
            if cfg.model.original_nemo_checkpoint is not None:
                model_class = DialogueZeroShotIntentModel
            else:
                model_class = SGDQAModel
        elif cfg.model.dataset.task in ['zero_shot', 'design']:
            model_class = DialogueZeroShotIntentModel
        else:
            model_class = IntentSlotClassificationModel
    elif 'gpt' in cfg.model.language_model.pretrained_model_name.lower():
        if cfg.model.dataset.task in ['ms_marco', 'mellon_qa']:
            model_class = DialogueGPTGenerationModel
        else:
            model_class = DialogueGPTClassificationModel
    elif (
        'bart' in cfg.model.language_model.pretrained_model_name.lower()
        or 't5' in cfg.model.language_model.pretrained_model_name.lower()
    ):
        # please use bf16/32 with t5-large and above
        # see https://github.com/huggingface/transformers/pull/10956
        model_class = DialogueS2SGenerationModel
    elif 'sentence-transformers' in cfg.model.language_model.pretrained_model_name.lower():
        model_class = DialogueNearestNeighbourModel

    if cfg.pretrained_model or (cfg.model.nemo_path and os.path.exists(cfg.model.nemo_path)):
        if cfg.pretrained_model:
            logging.info(f'Loading pretrained model {cfg.pretrained_model}')
            model = model_class.from_pretrained(cfg.pretrained_model)
        else:
            logging.info(f'Restoring model from {cfg.model.nemo_path}')
            model = model_class.restore_from(cfg.model.nemo_path, trainer=trainer)

        if cfg.do_training:
            model.setup_training_data(train_data_config=cfg.model.train_ds)
            model.setup_multiple_validation_data(val_data_config=cfg.model.validation_ds)
    else:
        logging.info(f'Config: {OmegaConf.to_yaml(cfg)}')
        model = model_class(cfg.model, trainer=trainer)

    if cfg.do_training:
        trainer.fit(model)
        if cfg.model.nemo_path:
            if not os.path.exists(cfg.model.nemo_path):
                model.save_to(cfg.model.nemo_path)
            else:
                updated_nemo_path = cfg.model.nemo_path.replace(".nemo", "_new.nemo")
                logging.warning("nemo path exists, saving at {} instead".format(updated_nemo_path))
                model.save_to(updated_nemo_path)

    else:
        data_dir = cfg.model.dataset.get('data_dir', None)
        dialogues_example_dir = cfg.model.dataset.get('dialogues_example_dir', None)

        if data_dir is None or dialogues_example_dir is None:
            raise ValueError('No dataset directory provided. Skipping evaluation. ')
        elif not os.path.exists(data_dir):
            raise ValueError(f'{data_dir} is not found, skipping evaluation on the test set.')
        else:
            if hasattr(model, "update_data_dirs"):
                model.update_data_dirs(data_dir=data_dir, dialogues_example_dir=dialogues_example_dir)
                model._cfg.dataset = cfg.model.dataset

    if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.ds_item is not None:
        model.setup_multiple_test_data(test_data_config=cfg.model.test_ds)
        trainer.test(model)


if __name__ == '__main__':
    main()