File size: 13,209 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import os
from dataclasses import dataclass, is_dataclass
from typing import Optional
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf
from nemo.collections.asr.metrics.rnnt_wer import RNNTDecodingConfig
from nemo.collections.asr.metrics.wer import CTCDecodingConfig
from nemo.collections.asr.models.ctc_models import EncDecCTCModel
from nemo.collections.asr.modules.conformer_encoder import ConformerChangeConfig
from nemo.collections.asr.parts.utils.transcribe_utils import (
compute_output_filename,
prepare_audio_data,
setup_model,
transcribe_partial_audio,
write_transcription,
)
from nemo.collections.common.tokenizers.aggregate_tokenizer import AggregateTokenizer
from nemo.core.config import hydra_runner
from nemo.utils import logging
"""
Transcribe audio file on a single CPU/GPU. Useful for transcription of moderate amounts of audio data.
# Arguments
model_path: path to .nemo ASR checkpoint
pretrained_name: name of pretrained ASR model (from NGC registry)
audio_dir: path to directory with audio files
dataset_manifest: path to dataset JSON manifest file (in NeMo format)
compute_timestamps: Bool to request greedy time stamp information (if the model supports it)
compute_langs: Bool to request language ID information (if the model supports it)
(Optionally: You can limit the type of timestamp computations using below overrides)
ctc_decoding.ctc_timestamp_type="all" # (default all, can be [all, char, word])
rnnt_decoding.rnnt_timestamp_type="all" # (default all, can be [all, char, word])
(Optionally: You can limit the type of timestamp computations using below overrides)
ctc_decoding.ctc_timestamp_type="all" # (default all, can be [all, char, word])
rnnt_decoding.rnnt_timestamp_type="all" # (default all, can be [all, char, word])
output_filename: Output filename where the transcriptions will be written
batch_size: batch size during inference
cuda: Optional int to enable or disable execution of model on certain CUDA device.
amp: Bool to decide if Automatic Mixed Precision should be used during inference
audio_type: Str filetype of the audio. Supported = wav, flac, mp3
overwrite_transcripts: Bool which when set allows repeated transcriptions to overwrite previous results.
ctc_decoding: Decoding sub-config for CTC. Refer to documentation for specific values.
rnnt_decoding: Decoding sub-config for RNNT. Refer to documentation for specific values.
# Usage
ASR model can be specified by either "model_path" or "pretrained_name".
Data for transcription can be defined with either "audio_dir" or "dataset_manifest".
append_pred - optional. Allows you to add more than one prediction to an existing .json
pred_name_postfix - optional. The name you want to be written for the current model
Results are returned in a JSON manifest file.
python transcribe_speech.py \
model_path=null \
pretrained_name=null \
audio_dir="<remove or path to folder of audio files>" \
dataset_manifest="<remove or path to manifest>" \
output_filename="<remove or specify output filename>" \
batch_size=32 \
compute_timestamps=False \
compute_langs=False \
cuda=0 \
amp=True \
append_pred=False \
pred_name_postfix="<remove or use another model name for output filename>"
"""
@dataclass
class ModelChangeConfig:
# Sub-config for changes specific to the Conformer Encoder
conformer: ConformerChangeConfig = ConformerChangeConfig()
@dataclass
class TranscriptionConfig:
# Required configs
model_path: Optional[str] = None # Path to a .nemo file
pretrained_name: Optional[str] = None # Name of a pretrained model
audio_dir: Optional[str] = None # Path to a directory which contains audio files
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
channel_selector: Optional[int] = None # Used to select a single channel from multi-channel files
audio_key: str = 'audio_filepath' # Used to override the default audio key in dataset_manifest
eval_config_yaml: Optional[str] = None # Path to a yaml file of config of evaluation
# General configs
output_filename: Optional[str] = None
batch_size: int = 32
num_workers: int = 0
append_pred: bool = False # Sets mode of work, if True it will add new field transcriptions.
pred_name_postfix: Optional[str] = None # If you need to use another model name, rather than standard one.
random_seed: Optional[int] = None # seed number going to be used in seed_everything()
# Set to True to output greedy timestamp information (only supported models)
compute_timestamps: bool = False
# Set to True to output language ID information
compute_langs: bool = False
# Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
# device anyway, and do inference on CPU only if CUDA device is not found.
# If `cuda` is a negative number, inference will be on CPU only.
cuda: Optional[int] = None
amp: bool = False
audio_type: str = "wav"
# Recompute model transcription, even if the output folder exists with scores.
overwrite_transcripts: bool = True
# Decoding strategy for CTC models
ctc_decoding: CTCDecodingConfig = CTCDecodingConfig()
# Decoding strategy for RNNT models
rnnt_decoding: RNNTDecodingConfig = RNNTDecodingConfig(fused_batch_size=-1)
# decoder type: ctc or rnnt, can be used to switch between CTC and RNNT decoder for Joint RNNT/CTC models
decoder_type: Optional[str] = None
# Use this for model-specific changes before transcription
model_change: ModelChangeConfig = ModelChangeConfig()
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
def main(cfg: TranscriptionConfig) -> TranscriptionConfig:
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
if is_dataclass(cfg):
cfg = OmegaConf.structured(cfg)
if cfg.random_seed:
pl.seed_everything(cfg.random_seed)
if cfg.model_path is None and cfg.pretrained_name is None:
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
if cfg.audio_dir is None and cfg.dataset_manifest is None:
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
# Load augmentor from exteranl yaml file which contains eval info, could be extend to other feature such VAD, P&C
augmentor = None
if cfg.eval_config_yaml:
eval_config = OmegaConf.load(cfg.eval_config_yaml)
augmentor = eval_config.test_ds.get("augmentor")
logging.info(f"Will apply on-the-fly augmentation on samples during transcription: {augmentor} ")
# setup GPU
if cfg.cuda is None:
if torch.cuda.is_available():
device = [0] # use 0th CUDA device
accelerator = 'gpu'
else:
device = 1
accelerator = 'cpu'
else:
device = [cfg.cuda]
accelerator = 'gpu'
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
logging.info(f"Inference will be done on device : {device}")
asr_model, model_name = setup_model(cfg, map_location)
trainer = pl.Trainer(devices=device, accelerator=accelerator)
asr_model.set_trainer(trainer)
asr_model = asr_model.eval()
# collect additional transcription information
return_hypotheses = True
# we will adjust this flag is the model does not support it
compute_timestamps = cfg.compute_timestamps
compute_langs = cfg.compute_langs
# Setup decoding strategy
if hasattr(asr_model, 'change_decoding_strategy'):
if cfg.decoder_type is not None:
# TODO: Support compute_langs in CTC eventually
if cfg.compute_langs and cfg.decoder_type == 'ctc':
raise ValueError("CTC models do not support `compute_langs` at the moment")
decoding_cfg = cfg.rnnt_decoding if cfg.decoder_type == 'rnnt' else cfg.ctc_decoding
decoding_cfg.compute_timestamps = cfg.compute_timestamps # both ctc and rnnt support it
if 'preserve_alignments' in decoding_cfg:
decoding_cfg.preserve_alignments = cfg.compute_timestamps
if 'compute_langs' in decoding_cfg:
decoding_cfg.compute_langs = cfg.compute_langs
asr_model.change_decoding_strategy(decoding_cfg, decoder_type=cfg.decoder_type)
# Check if ctc or rnnt model
elif hasattr(asr_model, 'joint'): # RNNT model
cfg.rnnt_decoding.fused_batch_size = -1
cfg.rnnt_decoding.compute_timestamps = cfg.compute_timestamps
cfg.rnnt_decoding.compute_langs = cfg.compute_langs
if 'preserve_alignments' in cfg.rnnt_decoding:
cfg.rnnt_decoding.preserve_alignments = cfg.compute_timestamps
asr_model.change_decoding_strategy(cfg.rnnt_decoding)
else:
if cfg.compute_langs:
raise ValueError("CTC models do not support `compute_langs` at the moment.")
cfg.ctc_decoding.compute_timestamps = cfg.compute_timestamps
asr_model.change_decoding_strategy(cfg.ctc_decoding)
# prepare audio filepaths and decide wether it's partical audio
filepaths, partial_audio = prepare_audio_data(cfg)
# setup AMP (optional)
if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
logging.info("AMP enabled!\n")
autocast = torch.cuda.amp.autocast
else:
@contextlib.contextmanager
def autocast():
yield
# Compute output filename
cfg = compute_output_filename(cfg, model_name)
# if transcripts should not be overwritten, and already exists, skip re-transcription step and return
if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
logging.info(
f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
)
return cfg
# transcribe audio
with autocast():
with torch.no_grad():
if partial_audio:
if isinstance(asr_model, EncDecCTCModel):
transcriptions = transcribe_partial_audio(
asr_model=asr_model,
path2manifest=cfg.dataset_manifest,
batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
return_hypotheses=return_hypotheses,
channel_selector=cfg.channel_selector,
augmentor=augmentor,
)
else:
logging.warning(
"RNNT models do not support transcribe partial audio for now. Transcribing full audio."
)
transcriptions = asr_model.transcribe(
paths2audio_files=filepaths,
batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
return_hypotheses=return_hypotheses,
channel_selector=cfg.channel_selector,
augmentor=augmentor,
)
else:
transcriptions = asr_model.transcribe(
paths2audio_files=filepaths,
batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
return_hypotheses=return_hypotheses,
channel_selector=cfg.channel_selector,
augmentor=augmentor,
)
logging.info(f"Finished transcribing {len(filepaths)} files !")
logging.info(f"Writing transcriptions into file: {cfg.output_filename}")
# if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
if type(transcriptions) == tuple and len(transcriptions) == 2:
transcriptions = transcriptions[0]
# write audio transcriptions
output_filename = write_transcription(
transcriptions,
cfg,
model_name,
filepaths=filepaths,
compute_langs=compute_langs,
compute_timestamps=compute_timestamps,
)
logging.info(f"Finished writing predictions to {output_filename}!")
return cfg
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|