File size: 9,587 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import json
import os
import tempfile
from argparse import ArgumentParser
import torch
from omegaconf import OmegaConf
from tqdm import tqdm
from nemo.collections.asr.metrics.wer import word_error_rate
from nemo.collections.asr.models import ASRModel
from nemo.collections.asr.parts.submodules.rnnt_greedy_decoding import TorchscriptGreedyBatchedRNNTInfer
from nemo.utils import logging
"""
Script to compare the outputs of a NeMo Pytorch based RNNT Model and its Torchscript exported representation.
# Compare a NeMo and Torchscript model
python infer_transducer_ts.py \
--nemo_model="<path to a .nemo file>" \
OR
--pretrained_model="<name of a pretrained model>" \
--ts_encoder="<path to ts encoder file>" \
--ts_decoder="<path to ts decoder-joint file>" \
--ts_cfg="<path to a export ts model's config file>" \
--dataset_manifest="<Either pass a manifest file path here>" \
--audio_dir="<Or pass a directory containing preprocessed monochannel audio files>" \
--max_symbold_per_step=5 \
--batch_size=32 \
--log
# Export and compare a NeMo and Torchscript model
python infer_transducer_ts.py \
--nemo_model="<path to a .nemo file>" \
OR
--pretrained_model="<name of a pretrained model>" \
--export \
--dataset_manifest="<Either pass a manifest file path here>" \
--audio_dir="<Or pass a directory containing preprocessed monochannel audio files>" \
--max_symbold_per_step=5 \
--batch_size=32 \
--log
"""
def parse_arguments():
parser = ArgumentParser()
parser.add_argument(
"--nemo_model", type=str, default=None, required=False, help="Path to .nemo file",
)
parser.add_argument(
'--pretrained_model', type=str, default=None, required=False, help='Name of a pretrained NeMo file'
)
parser.add_argument('--ts_encoder', type=str, default=None, required=False, help="Path to ts encoder model")
parser.add_argument(
'--ts_decoder', type=str, default=None, required=False, help="Path to ts decoder + joint model"
)
parser.add_argument(
'--ts_cfg', type=str, default=None, required=False, help='Path to the yaml config of the exported model'
)
parser.add_argument('--threshold', type=float, default=0.01, required=False)
parser.add_argument('--dataset_manifest', type=str, default=None, required=False, help='Path to dataset manifest')
parser.add_argument('--audio_dir', type=str, default=None, required=False, help='Path to directory of audio files')
parser.add_argument('--audio_type', type=str, default='wav', help='File format of audio')
parser.add_argument(
'--export', action='store_true', help="Whether to export the model into torchscript prior to eval"
)
parser.add_argument('--max_symbold_per_step', type=int, default=5, required=False, help='Number of decoding steps')
parser.add_argument('--batch_size', type=int, default=32, help='Batchsize')
parser.add_argument('--log', action='store_true', help='Log the predictions between pytorch and torchscript')
args = parser.parse_args()
return args
def assert_args(args):
if args.nemo_model is None and args.pretrained_model is None:
raise ValueError(
"`nemo_model` or `pretrained_model` must be passed ! It is required for decoding the RNNT tokens "
"and ensuring predictions match between Torch and Torchscript."
)
if args.nemo_model is not None and args.pretrained_model is not None:
raise ValueError(
"`nemo_model` and `pretrained_model` cannot both be passed ! Only one can be passed to this script."
)
if args.ts_cfg is None:
raise ValueError(
"Must provide the yaml config of the exported model. You can obtain it by loading the "
"nemo model and then using OmegaConf.save(model.cfg, 'cfg.yaml')"
)
if args.export and (args.ts_encoder is not None or args.ts_decoder is not None):
raise ValueError("If `export` is set, then `ts_encoder` and `ts_decoder` arguments must be None")
if args.audio_dir is None and args.dataset_manifest is None:
raise ValueError("Both `dataset_manifest` and `audio_dir` cannot be None!")
if args.audio_dir is not None and args.dataset_manifest is not None:
raise ValueError("Submit either `dataset_manifest` or `audio_dir`.")
if int(args.max_symbold_per_step) < 1:
raise ValueError("`max_symbold_per_step` must be an integer > 0")
def export_model_if_required(args, nemo_model):
if args.export:
nemo_model.export(output="temp_rnnt.ts", check_trace=True)
OmegaConf.save(nemo_model.cfg, "ts_cfg.yaml")
args.ts_encoder = "encoder-temp_rnnt.ts"
args.ts_decoder = "decoder_joint-temp_rnnt.ts"
args.ts_cfg = "ts_cfg.yaml"
def resolve_audio_filepaths(args):
# get audio filenames
if args.audio_dir is not None:
filepaths = list(glob.glob(os.path.join(args.audio_dir.audio_dir, f"*.{args.audio_type}")))
else:
# get filenames from manifest
filepaths = []
with open(args.dataset_manifest, 'r', encoding='utf-8') as f:
for line in f:
item = json.loads(line)
filepaths.append(item['audio_filepath'])
logging.info(f"\nTranscribing {len(filepaths)} files...\n")
return filepaths
def main():
args = parse_arguments()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Instantiate pytorch model
if args.nemo_model is not None:
nemo_model = args.nemo_model
nemo_model = ASRModel.restore_from(nemo_model, map_location=device) # type: ASRModel
nemo_model.freeze()
elif args.pretrained_model is not None:
nemo_model = args.pretrained_model
nemo_model = ASRModel.from_pretrained(nemo_model, map_location=device) # type: ASRModel
nemo_model.freeze()
else:
raise ValueError("Please pass either `nemo_model` or `pretrained_model` !")
if torch.cuda.is_available():
nemo_model = nemo_model.to('cuda')
export_model_if_required(args, nemo_model)
# Instantiate RNNT Decoding loop
encoder_model = args.ts_encoder
decoder_model = args.ts_decoder
ts_cfg = OmegaConf.load(args.ts_cfg)
max_symbols_per_step = args.max_symbold_per_step
decoding = TorchscriptGreedyBatchedRNNTInfer(encoder_model, decoder_model, ts_cfg, device, max_symbols_per_step)
audio_filepath = resolve_audio_filepaths(args)
# Evaluate Pytorch Model (CPU/GPU)
actual_transcripts = nemo_model.transcribe(audio_filepath, batch_size=args.batch_size)[0]
# Evaluate Torchscript model
with tempfile.TemporaryDirectory() as tmpdir:
with open(os.path.join(tmpdir, 'manifest.json'), 'w', encoding='utf-8') as fp:
for audio_file in audio_filepath:
entry = {'audio_filepath': audio_file, 'duration': 100000, 'text': 'nothing'}
fp.write(json.dumps(entry) + '\n')
config = {'paths2audio_files': audio_filepath, 'batch_size': args.batch_size, 'temp_dir': tmpdir}
nemo_model.preprocessor.featurizer.dither = 0.0
nemo_model.preprocessor.featurizer.pad_to = 0
temporary_datalayer = nemo_model._setup_transcribe_dataloader(config)
all_hypothesis = []
for test_batch in tqdm(temporary_datalayer, desc="Torchscript Transcribing"):
input_signal, input_signal_length = test_batch[0], test_batch[1]
input_signal = input_signal.to(device)
input_signal_length = input_signal_length.to(device)
# Acoustic features
processed_audio, processed_audio_len = nemo_model.preprocessor(
input_signal=input_signal, length=input_signal_length
)
# RNNT Decoding loop
hypotheses = decoding(audio_signal=processed_audio, length=processed_audio_len)
# Process hypothesis (map char/subword token ids to text)
hypotheses = nemo_model.decoding.decode_hypothesis(hypotheses) # type: List[str]
# Extract text from the hypothesis
texts = [h.text for h in hypotheses]
all_hypothesis += texts
del processed_audio, processed_audio_len
del test_batch
if args.log:
for pt_transcript, ts_transcript in zip(actual_transcripts, all_hypothesis):
print(f"Pytorch Transcripts : {pt_transcript}")
print(f"Torchscript Transcripts : {ts_transcript}")
print()
# Measure error rate between torchscript and pytorch transcipts
pt_ts_cer = word_error_rate(all_hypothesis, actual_transcripts, use_cer=True)
assert pt_ts_cer < args.threshold, "Threshold violation !"
print("Character error rate between Pytorch and Torchscript :", pt_ts_cer)
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|