File size: 8,875 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import json
import os
import tempfile
from argparse import ArgumentParser

import torch
from tqdm import tqdm

from nemo.collections.asr.metrics.wer import word_error_rate
from nemo.collections.asr.models import ASRModel
from nemo.collections.asr.parts.submodules.rnnt_greedy_decoding import ONNXGreedyBatchedRNNTInfer
from nemo.utils import logging


"""
Script to compare the outputs of a NeMo Pytorch based RNNT Model and its ONNX exported representation.

# Compare a NeMo and ONNX model
python infer_transducer_onnx.py \
    --nemo_model="<path to a .nemo file>" \
    OR
    --pretrained_model="<name of a pretrained model>" \
    --onnx_encoder="<path to onnx encoder file>" \
    --onnx_decoder="<path to onnx decoder-joint file>" \
    --dataset_manifest="<Either pass a manifest file path here>" \
    --audio_dir="<Or pass a directory containing preprocessed monochannel audio files>" \
    --max_symbold_per_step=5 \
    --batch_size=32 \
    --log
    
# Export and compare a NeMo and ONNX model
python infer_transducer_onnx.py \
    --nemo_model="<path to a .nemo file>" \
    OR
    --pretrained_model="<name of a pretrained model>" \
    --export \
    --dataset_manifest="<Either pass a manifest file path here>" \
    --audio_dir="<Or pass a directory containing preprocessed monochannel audio files>" \
    --max_symbold_per_step=5 \
    --batch_size=32 \
    --log
"""


def parse_arguments():
    parser = ArgumentParser()
    parser.add_argument(
        "--nemo_model", type=str, default=None, required=False, help="Path to .nemo file",
    )
    parser.add_argument(
        '--pretrained_model', type=str, default=None, required=False, help='Name of a pretrained NeMo file'
    )
    parser.add_argument('--onnx_encoder', type=str, default=None, required=False, help="Path to onnx encoder model")
    parser.add_argument(
        '--onnx_decoder', type=str, default=None, required=False, help="Path to onnx decoder + joint model"
    )
    parser.add_argument('--threshold', type=float, default=0.01, required=False)

    parser.add_argument('--dataset_manifest', type=str, default=None, required=False, help='Path to dataset manifest')
    parser.add_argument('--audio_dir', type=str, default=None, required=False, help='Path to directory of audio files')
    parser.add_argument('--audio_type', type=str, default='wav', help='File format of audio')

    parser.add_argument('--export', action='store_true', help="Whether to export the model into onnx prior to eval")
    parser.add_argument('--max_symbold_per_step', type=int, default=5, required=False, help='Number of decoding steps')
    parser.add_argument('--batch_size', type=int, default=32, help='Batchsize')
    parser.add_argument('--log', action='store_true', help='Log the predictions between pytorch and onnx')

    args = parser.parse_args()
    return args


def assert_args(args):
    if args.nemo_model is None and args.pretrained_model is None:
        raise ValueError(
            "`nemo_model` or `pretrained_model` must be passed ! It is required for decoding the RNNT tokens "
            "and ensuring predictions match between Torch and ONNX."
        )

    if args.nemo_model is not None and args.pretrained_model is not None:
        raise ValueError(
            "`nemo_model` and `pretrained_model` cannot both be passed ! Only one can be passed to this script."
        )

    if args.export and (args.onnx_encoder is not None or args.onnx_decoder is not None):
        raise ValueError("If `export` is set, then `onnx_encoder` and `onnx_decoder` arguments must be None")

    if args.audio_dir is None and args.dataset_manifest is None:
        raise ValueError("Both `dataset_manifest` and `audio_dir` cannot be None!")

    if args.audio_dir is not None and args.dataset_manifest is not None:
        raise ValueError("Submit either `dataset_manifest` or `audio_dir`.")

    if int(args.max_symbold_per_step) < 1:
        raise ValueError("`max_symbold_per_step` must be an integer > 0")


def export_model_if_required(args, nemo_model):
    if args.export:
        nemo_model.export("temp_rnnt.onnx")
        args.onnx_encoder = "encoder-temp_rnnt.onnx"
        args.onnx_decoder = "decoder_joint-temp_rnnt.onnx"


def resolve_audio_filepaths(args):
    # get audio filenames
    if args.audio_dir is not None:
        filepaths = list(glob.glob(os.path.join(args.audio_dir.audio_dir, f"*.{args.audio_type}")))
    else:
        # get filenames from manifest
        filepaths = []
        with open(args.dataset_manifest, 'r', encoding='utf-8') as f:
            for line in f:
                item = json.loads(line)
                filepaths.append(item['audio_filepath'])

    logging.info(f"\nTranscribing {len(filepaths)} files...\n")

    return filepaths


def main():
    args = parse_arguments()

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    # Instantiate pytorch model
    if args.nemo_model is not None:
        nemo_model = args.nemo_model
        nemo_model = ASRModel.restore_from(nemo_model, map_location=device)  # type: ASRModel
        nemo_model.freeze()
    elif args.pretrained_model is not None:
        nemo_model = args.pretrained_model
        nemo_model = ASRModel.from_pretrained(nemo_model, map_location=device)  # type: ASRModel
        nemo_model.freeze()
    else:
        raise ValueError("Please pass either `nemo_model` or `pretrained_model` !")

    if torch.cuda.is_available():
        nemo_model = nemo_model.to('cuda')

    export_model_if_required(args, nemo_model)

    # Instantiate RNNT Decoding loop
    encoder_model = args.onnx_encoder
    decoder_model = args.onnx_decoder
    max_symbols_per_step = args.max_symbold_per_step
    decoding = ONNXGreedyBatchedRNNTInfer(encoder_model, decoder_model, max_symbols_per_step)

    audio_filepath = resolve_audio_filepaths(args)

    # Evaluate Pytorch Model (CPU/GPU)
    actual_transcripts = nemo_model.transcribe(audio_filepath, batch_size=args.batch_size)[0]

    # Evaluate ONNX model
    with tempfile.TemporaryDirectory() as tmpdir:
        with open(os.path.join(tmpdir, 'manifest.json'), 'w', encoding='utf-8') as fp:
            for audio_file in audio_filepath:
                entry = {'audio_filepath': audio_file, 'duration': 100000, 'text': 'nothing'}
                fp.write(json.dumps(entry) + '\n')

        config = {'paths2audio_files': audio_filepath, 'batch_size': args.batch_size, 'temp_dir': tmpdir}

        nemo_model.preprocessor.featurizer.dither = 0.0
        nemo_model.preprocessor.featurizer.pad_to = 0

        temporary_datalayer = nemo_model._setup_transcribe_dataloader(config)

        all_hypothesis = []
        for test_batch in tqdm(temporary_datalayer, desc="ONNX Transcribing"):
            input_signal, input_signal_length = test_batch[0], test_batch[1]
            input_signal = input_signal.to(device)
            input_signal_length = input_signal_length.to(device)

            # Acoustic features
            processed_audio, processed_audio_len = nemo_model.preprocessor(
                input_signal=input_signal, length=input_signal_length
            )
            # RNNT Decoding loop
            hypotheses = decoding(audio_signal=processed_audio, length=processed_audio_len)

            # Process hypothesis (map char/subword token ids to text)
            hypotheses = nemo_model.decoding.decode_hypothesis(hypotheses)  # type: List[str]

            # Extract text from the hypothesis
            texts = [h.text for h in hypotheses]

            all_hypothesis += texts
            del processed_audio, processed_audio_len
            del test_batch

    if args.log:
        for pt_transcript, onnx_transcript in zip(actual_transcripts, all_hypothesis):
            print(f"Pytorch Transcripts : {pt_transcript}")
            print(f"ONNX Transcripts    : {onnx_transcript}")
        print()

    # Measure error rate between onnx and pytorch transcipts
    pt_onnx_cer = word_error_rate(all_hypothesis, actual_transcripts, use_cer=True)
    assert pt_onnx_cer < args.threshold, "Threshold violation !"

    print("Character error rate between Pytorch and ONNX :", pt_onnx_cer)


if __name__ == '__main__':
    main()  # noqa pylint: disable=no-value-for-parameter