File size: 4,339 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict
import pytorch_lightning as pl
import nemo.collections.asr as nemo_asr
from nemo.collections.asr.models import EncDecCTCModel, configs
from nemo.utils.exp_manager import exp_manager
"""
python speech_to_text_structured.py
"""
# Generate default asr model config
cfg = configs.EncDecCTCModelConfig()
# set global values
cfg.model.repeat = 5
cfg.model.separable = True
# fmt: off
LABELS = [
" ", "a", "b", "c", "d", "e",
"f", "g", "h", "i", "j", "k",
"l", "m", "n", "o", "p", "q",
"r", "s", "t", "u", "v", "w",
"x", "y", "z", "'",
]
# fmt: on
qn_15x5 = [
nemo_asr.modules.conv_asr.JasperEncoderConfig(
filters=256,
repeat=1,
kernel=[33],
stride=[2],
separable=cfg.model.separable,
dilation=[1],
dropout=cfg.model.dropout,
residual=False,
),
nemo_asr.modules.conv_asr.JasperEncoderConfig(
filters=256,
repeat=1,
kernel=[33],
stride=[1],
separable=cfg.model.separable,
dilation=[1],
dropout=cfg.model.dropout,
residual=True,
),
# ... repeat 14 more times
nemo_asr.modules.conv_asr.JasperEncoderConfig(
filters=1024, repeat=1, kernel=[1], stride=[1], dilation=[1], dropout=cfg.model.dropout, residual=False,
),
]
def main():
# Update values
# MODEL UPDATES
cfg.name = "Mini QuartzNet"
cfg.model.labels = LABELS
# train ds
cfg.model.train_ds.manifest_filepath = "<path to train dataset>"
cfg.model.train_ds.labels = LABELS
cfg.model.train_ds.sample_rate = cfg.model.sample_rate
# validation ds
cfg.model.validation_ds.manifest_filepath = "<path to test dataset>"
cfg.model.validation_ds.labels = LABELS
cfg.model.validation_ds.sample_rate = cfg.model.sample_rate
# del `test_ds` does not work!
# Refer - https://stackoverflow.com/questions/58119758/how-to-remove-dataclass-attributes
# Hydra/OmegaConf dont allow custom .asdict() methods either
# For now, explicitly set parameters
cfg.model.test_ds.sample_rate = cfg.model.sample_rate
cfg.model.test_ds.labels = cfg.model.labels
# preprocessor
cfg.model.preprocessor.sample_rate = cfg.model.sample_rate
# spec aug
cfg.model.spec_augment.rect_masks = 5
cfg.model.spec_augment.rect_freq = 50
cfg.model.spec_augment.rect_time = 120
# encoder
cfg.model.encoder.feat_in = cfg.model.preprocessor.features
cfg.model.encoder.activation = 'relu'
cfg.model.encoder.jasper = qn_15x5
# decoder
cfg.model.decoder.feat_in = qn_15x5[-1].filters
cfg.model.decoder.num_classes = len(LABELS)
cfg.model.decoder.vocabulary = LABELS
# optim
cfg.model.optim.name = 'novograd'
cfg.model.optim.lr = 0.01
# `betas` dont exist inside the base config,
# so they cannot be added as such!
# Same for `weight_decay`.
cfg.model.optim.betas = [0.8, 0.5]
cfg.model.optim.weight_decay = 0.001
# sched
# As parameters such as warmup_steps and warmup_ratio
# dont exist inside the shell config, these values are not added!
cfg.model.optim.sched.name = "CosineAnnealing"
cfg.model.optim.sched.warmup_steps = None
cfg.model.optim.sched.warmup_ratio = 0.01
# Trainer config
cfg.trainer.devices = 1
cfg.trainer.max_epochs = 5
# Exp Manager config
cfg.exp_manager.name = cfg.name
# Note usage of asdict
trainer = pl.Trainer(**asdict(cfg.trainer))
exp_manager(trainer, asdict(cfg.exp_manager))
asr_model = EncDecCTCModel(cfg=cfg.model, trainer=trainer)
trainer.fit(asr_model)
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|