File size: 17,376 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# This config contains the default values for self-supervised pre-training of ContextNet encoder.
# In contrast to original ContextNet, the same number of filters is used throughout the model.
# Default learning parameters in this config are set for effective batch size of 1K. To train it with smaller effective
# batch sizes, you may need to re-tune the learning parameters or use higher accumulate_grad_batches.
# Here are the recommended configs for different variants of ContextNet, other parameters are the same as in this config file.
#
#  +-------------+---------+------------+
#  | Model       | filters | time_masks |
#  +=============+=========+============+
#  | Small  (14M)|   256   |    2       |
#  +-------------+---------+------------+
#  | Medium (40M)|   512   |    5       |
#  +-------------+---------+------------+
#  | Large (145M)|   1024  |   10       |
#  +-------------------------------------

name: &name "ContextNet-8x-Stride-SSL"

model:
  sample_rate: &sample_rate 16000

  train_ds:
    manifest_filepath: ???
    sample_rate: ${model.sample_rate}
    batch_size: 16  # Can be increased if memory allows or when using smaller model
    trim_silence: false
    max_duration: 16.7
    min_duration: 8.0
    shuffle: true
    use_start_end_token: false
    num_workers: 16
    pin_memory: true
    # tarred datasets
    is_tarred: false
    tarred_audio_filepaths: null
    tarred_shard_strategy: "scatter"
    shuffle_n: 2048
    # bucketing params
    bucketing_strategy: "synced_randomized"
    bucketing_batch_size: null

  validation_ds:
    manifest_filepath: ???
    sample_rate: ${model.sample_rate}
    batch_size: 8
    shuffle: false
    use_start_end_token: false
    num_workers: 16
    pin_memory: true
    min_duration: 8.0

  model_defaults:
    filters: 1024
    repeat: 5
    dropout: 0.1
    separable: true
    se: true
    se_context_size: -1
    kernel_size_factor: 1.0
    enc_hidden: 640
    decoder_out_channels: 128

  preprocessor:
    _target_: nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor
    sample_rate: ${model.sample_rate}
    normalize: "per_feature"
    window_size: 0.025
    window_stride: 0.01
    window: "hann"
    features: &n_mels 80
    n_fft: 512
    frame_splicing: 1
    dither: 0.00001
    pad_to: 16
    stft_conv: false

  spec_augment:
    _target_: nemo.collections.asr.modules.MaskedPatchAugmentation
    freq_masks: 3
    freq_width: 20
    patch_size: 48
    mask_patches: 0.5

  encoder:
    _target_: nemo.collections.asr.modules.ConvASREncoder
    feat_in: *n_mels
    activation: swish
    conv_mask: true
    init_mode: "tds_uniform"

    jasper:
      - filters: ${model.model_defaults.filters}
        repeat: 1
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: 0.0
        residual: false
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [2]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        stride_last: true
        residual_mode: "stride_add"
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [2]  # *stride
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        stride_last: true
        residual_mode: "stride_add"
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [2]  # stride
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        stride_last: true
        residual_mode: "stride_add"
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.filters}
        repeat: ${model.model_defaults.repeat}
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: ${model.model_defaults.dropout}
        residual: true
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

      - filters: ${model.model_defaults.enc_hidden}
        repeat: 1
        kernel: [5]
        stride: [1]
        dilation: [1]
        dropout: 0.0
        residual: false
        separable: ${model.model_defaults.separable}
        se: ${model.model_defaults.se}
        se_context_size: ${model.model_defaults.se_context_size}
        kernel_size_factor: ${model.model_defaults.kernel_size_factor}

  loss_list:
    contrastive:
      decoder:
        _target_: nemo.collections.asr.modules.ConvASRDecoderReconstruction
        feat_in: ${model.model_defaults.enc_hidden}
        feat_hidden: 128
        # features in hidden layer of decoder
        feat_out: ${model.model_defaults.decoder_out_channels}
        stride_layers: 1
        # if loss.combine_time_steps is different than the encoder stride,
        # then a corresponding amount of stride_layers needs to
        # be added to the decoder (here stride is 8 and combine_time_steps is 4)
        non_stride_layers: 0
        stride_transpose: true
        apply_softmax: false
      loss:
        _target_: nemo.collections.asr.losses.ContrastiveLoss
        in_dim: ${model.preprocessor.features}
        proj_dim: ${model.model_defaults.decoder_out_channels}
        combine_time_steps: 4 #how many spectrogram time steps are used for one target/representation for contrastive task
        quantized_targets: true #should quantizer or linear layer be used
        # (quantizer is required to extract pseudo-labels for other losses)
        codebook_size: 300 # number of vectors in the quantization codebook per group
        num_groups: 2 # number of groups in the quantizer codebook
        num_negatives: 100 # number of sampled negatives for each target
        sample_from_same_utterance_only: true #should negatives be sampled only from the same utterance
        sample_from_non_masked: false #should negatives be sampled from non-masked steps

    mlm:
      decoder:
        _target_: nemo.collections.asr.modules.ConvASRDecoderReconstruction
        feat_in: ${model.model_defaults.enc_hidden}
        feat_hidden: 128
        # features in hidden layer of decoder
        feat_out: 90000
        # this should be equal to codebook_size^groups in the contrastive loss to match the targets
        stride_layers: 1
        stride_transpose: true
        activation: "identity"
        apply_softmax: true
      loss:
        _target_: nemo.collections.asr.losses.MLMLoss
        combine_time_steps: 4
      targets_from_loss: "contrastive"
      loss_alpha: 1000.

  optim:
    name: adamw
    lr: 5.0
    # optimizer arguments
    betas: [0.9, 0.98]
    weight_decay: 1e-3

    # scheduler setup
    sched:
      name: NoamAnnealing
      d_model: ${model.model_defaults.enc_hidden}
      # scheduler config override
      warmup_steps: 25000
      warmup_ratio: null
      min_lr: 1e-6

trainer:
  devices: -1 # number of GPUs, -1 would use all available GPUs
  num_nodes: 1
  max_epochs: 1000
  max_steps: -1 # computed at runtime if not set
  val_check_interval: 1.0 # Set to 0.25 to check 4 times per epoch, or an int for number of iterations
  accelerator: auto
  strategy: ddp
  accumulate_grad_batches: 1
  gradient_clip_val: 1.0
  precision: 32 # Should be set to 16 for O1 and O2 to enable the AMP.
  log_every_n_steps: 10  # Interval of logging.
  enable_progress_bar: True
  resume_from_checkpoint: null # The path to a checkpoint file to continue the training, restores the whole state including the epoch, step, LR schedulers, apex, etc.
  num_sanity_val_steps: 0 # number of steps to perform validation steps for sanity check the validation process before starting the training, setting to 0 disables it
  check_val_every_n_epoch: 1 # number of evaluations on validation every n epochs
  sync_batchnorm: true
  enable_checkpointing: False # Provided by exp_manager
  logger: false  # Provided by exp_manager
  benchmark: false # needs to be false for models with variable-length speech input as it slows down training

exp_manager:
  exp_dir: null
  name: ${name}
  create_tensorboard_logger: true
  create_checkpoint_callback: true
  checkpoint_callback_params:
    # in case of multiple validation sets, first one is used
    monitor: "val_loss"
    mode: "min"
    save_top_k: 5

  # you need to set these two to True to continue the training
  resume_if_exists: false
  resume_ignore_no_checkpoint: false

  # You may use this section to create a W&B logger
  create_wandb_logger: false
  wandb_logger_kwargs:
    name: null
    project: null