File size: 24,905 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This file provides the ASR+VAD inference pipeline, with the option to perform only ASR or VAD alone.

There are two types of input, the first one is a manifest passed to `manifest_filepath`, 
and the other one is to pass a directory containing audios to `audio_dir` and specify `audio_type`.

The input manifest must be a manifest json file, where each line is a Python dictionary. The fields ["audio_filepath", "offset", "duration",  "text"] are required. An example of a manifest file is:
```
{"audio_filepath": "/path/to/audio_file1", "offset": 0, "duration": 10000,  "text": "a b c d e"}
{"audio_filepath": "/path/to/audio_file2", "offset": 0, "duration": 10000,  "text": "f g h i j"}
```

To run the code with ASR+VAD default settings:

```bash
python speech_to_text_with_vad.py \
    manifest_filepath=/PATH/TO/MANIFEST.json \
    vad_model=vad_multilingual_marblenet \
    asr_model=stt_en_conformer_ctc_large \
    vad_config=../conf/vad/vad_inference_postprocess.yaml
```

To use only ASR and disable VAD, set `vad_model=None` and `use_rttm=False`.

To use only VAD, set `asr_model=None` and specify both `vad_model` and `vad_config`.

To enable profiling, set `profiling=True`, but this will significantly slow down the program.

To use or disable feature masking, set `use_rttm` to `True` or `False`.

To normalize feature before masking, set `normalize=pre_norm`, 
and set `normalize=post_norm` for masking before normalization.

To use a specific value for feature masking, set `feat_mask_val` to the desired value. 
Default is `feat_mask_val=None`, where -16.530 will be used for `post_norm` and 0 will be used for `pre_norm`.

See more options in the `InferenceConfig` class.
"""


import contextlib
import json
import os
import time
from dataclasses import dataclass, is_dataclass
from pathlib import Path
from typing import Callable, Optional

import torch
import yaml
from omegaconf import DictConfig, OmegaConf
from torch.profiler import ProfilerActivity, profile, record_function
from tqdm import tqdm

from nemo.collections.asr.data import feature_to_text_dataset
from nemo.collections.asr.metrics.rnnt_wer import RNNTDecodingConfig
from nemo.collections.asr.metrics.wer import CTCDecodingConfig, word_error_rate
from nemo.collections.asr.models import ASRModel, EncDecClassificationModel
from nemo.collections.asr.parts.utils.manifest_utils import read_manifest, write_manifest
from nemo.collections.asr.parts.utils.vad_utils import (
    extract_audio_features,
    generate_overlap_vad_seq,
    generate_vad_segment_table,
    get_vad_stream_status,
    init_vad_model,
)
from nemo.core.config import hydra_runner
from nemo.utils import logging

try:
    from torch.cuda.amp import autocast
except ImportError:

    @contextlib.contextmanager
    def autocast(enabled=None):
        yield


@dataclass
class InferenceConfig:
    # Required configs
    asr_model: Optional[str] = None  # Path to a .nemo file or a pretrained NeMo model on NGC
    vad_model: Optional[str] = None  # Path to a .nemo file or a pretrained NeMo model on NGC
    vad_config: Optional[str] = None  # Path to a yaml file containing VAD post-processing configs
    manifest_filepath: Optional[str] = None  # Path to dataset's JSON manifest
    audio_dir: Optional[str] = None

    use_rttm: bool = True  # whether to use RTTM
    feat_mask_val: Optional[float] = None  # value used to mask features based on RTTM, set None to use defaults
    normalize: Optional[
        str
    ] = "post_norm"  # whether and where to normalize feature, choices=[None, `pre_norm`, `post_norm`]
    normalize_type: str = "per_feature"  # how to determine mean and std used for normalization
    use_pure_noise: bool = False  # whether input is pure noise or not.

    profiling: bool = False  # whether to enable pytorch profiling

    # General configs
    batch_size: int = 1  # batch size for ASR. Feature extraction and VAD only support single sample per batch.
    num_workers: int = 8
    sample_rate: int = 16000
    frame_unit_time_secs: float = 0.01  # unit time per frame in seconds, equal to `window_stride` in ASR configs.
    audio_type: str = "wav"

    # Output settings, no need to change
    output_dir: Optional[str] = None  # will be automatically set by the program
    output_filename: Optional[str] = None  # will be automatically set by the program
    pred_name_postfix: Optional[str] = None  # If you need to use another model name, rather than standard one.

    # Set to True to output language ID information
    compute_langs: bool = False

    # Decoding strategy for CTC models
    ctc_decoding: CTCDecodingConfig = CTCDecodingConfig()

    # Decoding strategy for RNNT models
    rnnt_decoding: RNNTDecodingConfig = RNNTDecodingConfig(fused_batch_size=-1)


@hydra_runner(config_name="InferenceConfig", schema=InferenceConfig)
def main(cfg):

    if is_dataclass(cfg):
        cfg = OmegaConf.structured(cfg)

    if cfg.output_dir is None:
        cfg.output_dir = "./outputs"
    output_dir = Path(cfg.output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)

    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    # setup profiling, note that profiling will significantly increast the total runtime
    if cfg.profiling:
        logging.info("Profiling enabled")
        profile_fn = profile
        record_fn = record_function
    else:
        logging.info("Profiling disabled")

        @contextlib.contextmanager
        def profile_fn(*args, **kwargs):
            yield

        @contextlib.contextmanager
        def record_fn(*args, **kwargs):
            yield

    input_manifest_file = prepare_inference_manifest(cfg)

    if cfg.manifest_filepath is None:
        cfg.manifest_filepath = str(input_manifest_file)

    with profile_fn(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, profile_memory=True
    ) as prof:

        input_manifest_file = extract_audio_features(input_manifest_file, cfg, record_fn)

        if cfg.vad_model is not None:
            logging.info(f"Running VAD with model: {cfg.vad_model}")
            input_manifest_file = run_vad_inference(input_manifest_file, cfg, record_fn)

        if cfg.asr_model is not None:
            logging.info(f"Running ASR with model: {cfg.asr_model}")
            run_asr_inference(input_manifest_file, cfg, record_fn)

    if cfg.profiling:
        print("--------------------------------------------------------------------\n")
        print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=15))
        print("--------------------------------------------------------------------\n")
    logging.info("Done.")


def prepare_inference_manifest(cfg: DictConfig) -> str:

    if cfg.audio_dir is not None and cfg.manifest_filepath is None:
        manifest_data = []
        for audio_file in Path(cfg.audio_dir).glob(f"**/*.{cfg.audio_type}"):
            item = {"audio_filepath": str(audio_file.absolute()), "duration": 1000000, "offset": 0}
            manifest_data.append(item)
        parent_dir = Path(cfg.audio_dir)
    else:
        manifest_data = read_manifest(cfg.manifest_filepath)
        parent_dir = Path(cfg.manifest_filepath).parent

    new_manifest_data = []

    for item in manifest_data:
        audio_file = Path(item["audio_filepath"])
        if len(str(audio_file)) < 255 and not audio_file.is_file() and not audio_file.is_absolute():
            new_audio_file = parent_dir / audio_file
            if new_audio_file.is_file():
                item["audio_filepath"] = str(new_audio_file.absolute())
            else:
                item["audio_filepath"] = os.path.expanduser(str(audio_file))
        else:
            item["audio_filepath"] = os.path.expanduser(str(audio_file))
        item["label"] = "infer"
        item["text"] = "-"
        new_manifest_data.append(item)

    new_manifest_filepath = str(Path(cfg.output_dir) / Path("temp_manifest_input.json"))
    write_manifest(new_manifest_filepath, new_manifest_data)
    return new_manifest_filepath


def extract_audio_features(manifest_filepath: str, cfg: DictConfig, record_fn: Callable) -> str:
    file_list = []
    manifest_data = []
    out_dir = Path(cfg.output_dir) / Path("features")
    new_manifest_filepath = str(Path(cfg.output_dir) / Path("temp_manifest_input_feature.json"))

    if Path(new_manifest_filepath).is_file():
        logging.info("Features already exist in output_dir, skipping feature extraction.")
        return new_manifest_filepath

    has_feat = False
    with open(manifest_filepath, 'r', encoding='utf-8') as fin:
        for line in fin.readlines():
            item = json.loads(line.strip())
            manifest_data.append(item)
            file_list.append(Path(item['audio_filepath']).stem)
            if "feature_file" in item:
                has_feat = True
    if has_feat:
        logging.info("Features already exist in manifest, skipping feature extraction.")
        return manifest_filepath

    out_dir.mkdir(parents=True, exist_ok=True)
    torch.set_grad_enabled(False)
    vad_model = EncDecClassificationModel.from_pretrained("vad_multilingual_marblenet")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    vad_model = vad_model.to(device)
    vad_model.eval()
    vad_model.setup_test_data(
        test_data_config={
            'batch_size': 1,
            'vad_stream': False,
            'sample_rate': cfg.sample_rate,
            'manifest_filepath': manifest_filepath,
            'labels': ['infer',],
            'num_workers': cfg.num_workers,
            'shuffle': False,
        }
    )

    logging.info(f"Extracting features on {len(file_list)} audio files...")
    with record_fn("feat_extract_loop"):
        for i, test_batch in enumerate(tqdm(vad_model.test_dataloader(), total=len(vad_model.test_dataloader()))):
            test_batch = [x.to(vad_model.device) for x in test_batch]
            with autocast():
                with record_fn("feat_extract_infer"):
                    processed_signal, processed_signal_length = vad_model.preprocessor(
                        input_signal=test_batch[0], length=test_batch[1],
                    )
                with record_fn("feat_extract_other"):
                    processed_signal = processed_signal.squeeze(0)[:, :processed_signal_length]
                    processed_signal = processed_signal.cpu()
                    outpath = os.path.join(out_dir, file_list[i] + ".pt")
                    outpath = str(Path(outpath).absolute())
                    torch.save(processed_signal, outpath)
                    manifest_data[i]["feature_file"] = outpath
                    del test_batch

    logging.info(f"Features saved at: {out_dir}")
    write_manifest(new_manifest_filepath, manifest_data)
    return new_manifest_filepath


def run_vad_inference(manifest_filepath: str, cfg: DictConfig, record_fn: Callable) -> str:
    logging.info("Start VAD inference pipeline...")
    vad_model = init_vad_model(cfg.vad_model)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    vad_model = vad_model.to(device)
    vad_model.eval()

    vad_yaml = Path(cfg.vad_config)
    if not vad_yaml.is_file():
        raise ValueError(f"VAD config file not found: {cfg.vad_config}")

    with vad_yaml.open("r") as fp:
        vad_cfg = yaml.safe_load(fp)
    vad_cfg = DictConfig(vad_cfg)

    test_data_config = {
        'vad_stream': True,
        'manifest_filepath': manifest_filepath,
        'labels': ['infer',],
        'num_workers': cfg.num_workers,
        'shuffle': False,
        'window_length_in_sec': vad_cfg.vad.parameters.window_length_in_sec,
        'shift_length_in_sec': vad_cfg.vad.parameters.shift_length_in_sec,
    }
    vad_model.setup_test_data(test_data_config=test_data_config, use_feat=True)

    pred_dir = Path(cfg.output_dir) / Path("vad_frame_pred")
    if pred_dir.is_dir():
        logging.info(f"VAD frame-level prediction already exists: {pred_dir}, skipped")
    else:
        logging.info("Generating VAD frame-level prediction")
        pred_dir.mkdir(parents=True)
        t0 = time.time()
        pred_dir = generate_vad_frame_pred(
            vad_model=vad_model,
            window_length_in_sec=vad_cfg.vad.parameters.window_length_in_sec,
            shift_length_in_sec=vad_cfg.vad.parameters.shift_length_in_sec,
            manifest_vad_input=manifest_filepath,
            out_dir=str(pred_dir),
            use_feat=True,
            record_fn=record_fn,
        )
        t1 = time.time()
        logging.info(f"Time elapsed: {t1 - t0: .2f} seconds")
        logging.info(
            f"Finished generating VAD frame level prediction with window_length_in_sec={vad_cfg.vad.parameters.window_length_in_sec} and shift_length_in_sec={vad_cfg.vad.parameters.shift_length_in_sec}"
        )

    frame_length_in_sec = vad_cfg.vad.parameters.shift_length_in_sec
    # overlap smoothing filter
    if vad_cfg.vad.parameters.smoothing:
        # Generate predictions with overlapping input segments. Then a smoothing filter is applied to decide the label for a frame spanned by multiple segments.
        # smoothing_method would be either in majority vote (median) or average (mean)
        logging.info("Generating predictions with overlapping input segments")
        t0 = time.time()
        smoothing_pred_dir = generate_overlap_vad_seq(
            frame_pred_dir=pred_dir,
            smoothing_method=vad_cfg.vad.parameters.smoothing,
            overlap=vad_cfg.vad.parameters.overlap,
            window_length_in_sec=vad_cfg.vad.parameters.window_length_in_sec,
            shift_length_in_sec=vad_cfg.vad.parameters.shift_length_in_sec,
            num_workers=cfg.num_workers,
            out_dir=vad_cfg.smoothing_out_dir,
        )
        logging.info(
            f"Finish generating predictions with overlapping input segments with smoothing_method={vad_cfg.vad.parameters.smoothing} and overlap={vad_cfg.vad.parameters.overlap}"
        )
        t1 = time.time()
        logging.info(f"Time elapsed: {t1 - t0: .2f} seconds")
        pred_dir = smoothing_pred_dir
        frame_length_in_sec = 0.01

    # Turn frame-wise prediction into speech intervals
    logging.info(f"Generating segment tables with postprocessing params: {vad_cfg.vad.parameters.postprocessing}")
    segment_dir_name = "vad_rttm"
    for key, val in vad_cfg.vad.parameters.postprocessing.items():
        if key == "use_rttm":
            continue
        segment_dir_name = segment_dir_name + "-" + str(key) + str(val)

    segment_dir = Path(cfg.output_dir) / Path(segment_dir_name)
    if segment_dir.is_dir():
        logging.info(f"VAD speech segments already exists: {segment_dir}, skipped")
    else:
        segment_dir.mkdir(parents=True)
        t0 = time.time()
        vad_cfg.vad.parameters.postprocessing.use_rttm = True
        segment_dir = generate_vad_segment_table(
            vad_pred_dir=pred_dir,
            postprocessing_params=vad_cfg.vad.parameters.postprocessing,
            frame_length_in_sec=frame_length_in_sec,
            num_workers=cfg.num_workers,
            out_dir=segment_dir,
        )
        t1 = time.time()
        logging.info(f"Time elapsed: {t1 - t0: .2f} seconds")
        logging.info("Finished generating RTTM files from VAD predictions.")

    rttm_map = {}
    for filepath in Path(segment_dir).glob("*.rttm"):
        rttm_map[filepath.stem] = str(filepath.absolute())

    manifest_data = read_manifest(manifest_filepath)
    for i in range(len(manifest_data)):
        key = Path(manifest_data[i]["audio_filepath"]).stem
        manifest_data[i]["rttm_file"] = rttm_map[key]

    new_manifest_filepath = str(Path(cfg.output_dir) / Path(f"temp_manifest_{segment_dir_name}.json"))
    write_manifest(new_manifest_filepath, manifest_data)
    return new_manifest_filepath


def generate_vad_frame_pred(
    vad_model: EncDecClassificationModel,
    window_length_in_sec: float,
    shift_length_in_sec: float,
    manifest_vad_input: str,
    out_dir: str,
    use_feat: bool = False,
    record_fn: Callable = None,
) -> str:
    """
    Generate VAD frame level prediction and write to out_dir
    """
    time_unit = int(window_length_in_sec / shift_length_in_sec)
    trunc = int(time_unit / 2)
    trunc_l = time_unit - trunc
    all_len = 0

    data = []
    with open(manifest_vad_input, 'r', encoding='utf-8') as fin:
        for line in fin.readlines():
            file = json.loads(line)['audio_filepath'].split("/")[-1]
            data.append(file.split(".wav")[0])
    logging.info(f"Inference on {len(data)} audio files/json lines!")

    status = get_vad_stream_status(data)

    with record_fn("vad_infer_loop"):
        for i, test_batch in enumerate(tqdm(vad_model.test_dataloader(), total=len(vad_model.test_dataloader()))):
            test_batch = [x.to(vad_model.device) for x in test_batch]
            with autocast():
                with record_fn("vad_infer_model"):
                    if use_feat:
                        log_probs = vad_model(processed_signal=test_batch[0], processed_signal_length=test_batch[1])
                    else:
                        log_probs = vad_model(input_signal=test_batch[0], input_signal_length=test_batch[1])

                with record_fn("vad_infer_other"):
                    probs = torch.softmax(log_probs, dim=-1)
                    pred = probs[:, 1]

                    if status[i] == 'start':
                        to_save = pred[:-trunc]
                    elif status[i] == 'next':
                        to_save = pred[trunc:-trunc_l]
                    elif status[i] == 'end':
                        to_save = pred[trunc_l:]
                    else:
                        to_save = pred

                    all_len += len(to_save)
                    outpath = os.path.join(out_dir, data[i] + ".frame")
                    with open(outpath, "a", encoding='utf-8') as fout:
                        for f in range(len(to_save)):
                            fout.write('{0:0.4f}\n'.format(to_save[f]))

                    del test_batch
                    if status[i] == 'end' or status[i] == 'single':
                        all_len = 0
    return out_dir


def init_asr_model(model_path: str) -> ASRModel:
    if model_path.endswith('.nemo'):
        logging.info(f"Using local ASR model from {model_path}")
        asr_model = ASRModel.restore_from(restore_path=model_path)
    elif model_path.endswith('.ckpt'):
        asr_model = ASRModel.load_from_checkpoint(checkpoint_path=model_path)
    else:
        logging.info(f"Using NGC ASR model {model_path}")
        asr_model = ASRModel.from_pretrained(model_name=model_path)
    return asr_model


def run_asr_inference(manifest_filepath, cfg, record_fn) -> str:
    logging.info("Start ASR inference pipeline...")
    asr_model = init_asr_model(cfg.asr_model)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    asr_model = asr_model.to(device)
    asr_model.eval()

    # Setup decoding strategy
    decode_function = None
    if hasattr(asr_model, 'change_decoding_strategy'):
        # Check if ctc or rnnt model
        if hasattr(asr_model, 'joint'):  # RNNT model
            cfg.rnnt_decoding.fused_batch_size = -1
            cfg.rnnt_decoding.compute_langs = cfg.compute_langs
            asr_model.change_decoding_strategy(cfg.rnnt_decoding)
            decode_function = asr_model.decoding.rnnt_decoder_predictions_tensor
        else:
            asr_model.change_decoding_strategy(cfg.ctc_decoding)
            decode_function = asr_model.decoding.ctc_decoder_predictions_tensor
    else:
        raise ValueError(f"Only support CTC or RNNT models that have `change_decoding_strategy()` implemented.")

    # Compute output filename
    if cfg.output_filename is None:
        # create default output filename
        if cfg.pred_name_postfix is not None:
            cfg.output_filename = cfg.manifest_filepath.replace('.json', f'_{cfg.pred_name_postfix}.json')
        else:
            tag = f"{cfg.normalize}_{cfg.normalize_type}"
            if cfg.use_rttm:
                vad_tag = Path(manifest_filepath).stem
                vad_tag = vad_tag[len("temp_manifest_vad_rttm_") :]
                tag += f"-mask{cfg.feat_mask_val}-{vad_tag}"
            cfg.output_filename = cfg.manifest_filepath.replace('.json', f'-{Path(cfg.asr_model).stem}-{tag}.json')
        cfg.output_filename = Path(cfg.output_dir) / Path(cfg.output_filename).name

    logging.info("Setting up dataloader for ASR...")
    data_config = {
        "manifest_filepath": manifest_filepath,
        "normalize": cfg.normalize,
        "normalize_type": cfg.normalize_type,
        "use_rttm": cfg.use_rttm,
        "feat_mask_val": cfg.feat_mask_val,
        "frame_unit_time_secs": cfg.frame_unit_time_secs,
    }
    logging.info(f"use_rttm = {cfg.use_rttm}")
    if hasattr(asr_model, "tokenizer"):
        dataset = feature_to_text_dataset.get_bpe_dataset(config=data_config, tokenizer=asr_model.tokenizer)
    else:
        data_config["labels"] = asr_model.decoder.vocabulary
        dataset = feature_to_text_dataset.get_char_dataset(config=data_config)

    dataloader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=cfg.batch_size,
        collate_fn=dataset._collate_fn,
        drop_last=False,
        shuffle=False,
        num_workers=cfg.get('num_workers', 0),
        pin_memory=cfg.get('pin_memory', False),
    )

    logging.info("Start transcribing...")
    hypotheses = []
    all_hypotheses = []
    t0 = time.time()
    with autocast():
        with torch.no_grad():
            with record_fn("asr_infer_loop"):
                for test_batch in tqdm(dataloader, desc="Transcribing"):
                    with record_fn("asr_infer_model"):
                        outputs = asr_model.forward(
                            processed_signal=test_batch[0].to(device),
                            processed_signal_length=test_batch[1].to(device),
                        )
                    with record_fn("asr_infer_other"):
                        logits, logits_len = outputs[0], outputs[1]

                        current_hypotheses, all_hyp = decode_function(logits, logits_len, return_hypotheses=False,)

                        hypotheses += current_hypotheses
                        if all_hyp is not None:
                            all_hypotheses += all_hyp
                        else:
                            all_hypotheses += current_hypotheses

                        del logits
                        del test_batch
    t1 = time.time()
    logging.info(f"Time elapsed: {t1 - t0: .2f} seconds")

    logging.info("Finished transcribing.")
    # Save output to manifest
    input_manifest_data = read_manifest(manifest_filepath)
    manifest_data = read_manifest(cfg.manifest_filepath)
    groundtruth = []
    for i in range(len(manifest_data)):
        groundtruth.append(manifest_data[i]["text"])
        manifest_data[i]["pred_text"] = hypotheses[i]
        manifest_data[i]["feature_file"] = input_manifest_data[i]["feature_file"]
        if "rttm_file" in input_manifest_data[i]:
            manifest_data[i]["feature_file"] = input_manifest_data[i]["feature_file"]

    write_manifest(cfg.output_filename, manifest_data)

    if cfg.use_pure_noise:
        hypotheses = " ".join(hypotheses)
        words = hypotheses.split()
        chars = "".join(words)
        logging.info("-----------------------------------------")
        logging.info(f"Number of hallucinated characters={len(chars)}")
        logging.info(f"Number of hallucinated words={len(words)}")
        logging.info(f"Concatenated predictions: {hypotheses}")
        logging.info("-----------------------------------------")
    else:
        wer_score = word_error_rate(hypotheses=hypotheses, references=groundtruth)
        logging.info("-----------------------------------------")
        logging.info(f"WER={wer_score*100:.2f}")
        logging.info("-----------------------------------------")

    logging.info(f"ASR output saved at {cfg.output_filename}")
    return cfg.output_filename


if __name__ == "__main__":
    main()