File size: 24,905 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file provides the ASR+VAD inference pipeline, with the option to perform only ASR or VAD alone.
There are two types of input, the first one is a manifest passed to `manifest_filepath`,
and the other one is to pass a directory containing audios to `audio_dir` and specify `audio_type`.
The input manifest must be a manifest json file, where each line is a Python dictionary. The fields ["audio_filepath", "offset", "duration", "text"] are required. An example of a manifest file is:
```
{"audio_filepath": "/path/to/audio_file1", "offset": 0, "duration": 10000, "text": "a b c d e"}
{"audio_filepath": "/path/to/audio_file2", "offset": 0, "duration": 10000, "text": "f g h i j"}
```
To run the code with ASR+VAD default settings:
```bash
python speech_to_text_with_vad.py \
manifest_filepath=/PATH/TO/MANIFEST.json \
vad_model=vad_multilingual_marblenet \
asr_model=stt_en_conformer_ctc_large \
vad_config=../conf/vad/vad_inference_postprocess.yaml
```
To use only ASR and disable VAD, set `vad_model=None` and `use_rttm=False`.
To use only VAD, set `asr_model=None` and specify both `vad_model` and `vad_config`.
To enable profiling, set `profiling=True`, but this will significantly slow down the program.
To use or disable feature masking, set `use_rttm` to `True` or `False`.
To normalize feature before masking, set `normalize=pre_norm`,
and set `normalize=post_norm` for masking before normalization.
To use a specific value for feature masking, set `feat_mask_val` to the desired value.
Default is `feat_mask_val=None`, where -16.530 will be used for `post_norm` and 0 will be used for `pre_norm`.
See more options in the `InferenceConfig` class.
"""
import contextlib
import json
import os
import time
from dataclasses import dataclass, is_dataclass
from pathlib import Path
from typing import Callable, Optional
import torch
import yaml
from omegaconf import DictConfig, OmegaConf
from torch.profiler import ProfilerActivity, profile, record_function
from tqdm import tqdm
from nemo.collections.asr.data import feature_to_text_dataset
from nemo.collections.asr.metrics.rnnt_wer import RNNTDecodingConfig
from nemo.collections.asr.metrics.wer import CTCDecodingConfig, word_error_rate
from nemo.collections.asr.models import ASRModel, EncDecClassificationModel
from nemo.collections.asr.parts.utils.manifest_utils import read_manifest, write_manifest
from nemo.collections.asr.parts.utils.vad_utils import (
extract_audio_features,
generate_overlap_vad_seq,
generate_vad_segment_table,
get_vad_stream_status,
init_vad_model,
)
from nemo.core.config import hydra_runner
from nemo.utils import logging
try:
from torch.cuda.amp import autocast
except ImportError:
@contextlib.contextmanager
def autocast(enabled=None):
yield
@dataclass
class InferenceConfig:
# Required configs
asr_model: Optional[str] = None # Path to a .nemo file or a pretrained NeMo model on NGC
vad_model: Optional[str] = None # Path to a .nemo file or a pretrained NeMo model on NGC
vad_config: Optional[str] = None # Path to a yaml file containing VAD post-processing configs
manifest_filepath: Optional[str] = None # Path to dataset's JSON manifest
audio_dir: Optional[str] = None
use_rttm: bool = True # whether to use RTTM
feat_mask_val: Optional[float] = None # value used to mask features based on RTTM, set None to use defaults
normalize: Optional[
str
] = "post_norm" # whether and where to normalize feature, choices=[None, `pre_norm`, `post_norm`]
normalize_type: str = "per_feature" # how to determine mean and std used for normalization
use_pure_noise: bool = False # whether input is pure noise or not.
profiling: bool = False # whether to enable pytorch profiling
# General configs
batch_size: int = 1 # batch size for ASR. Feature extraction and VAD only support single sample per batch.
num_workers: int = 8
sample_rate: int = 16000
frame_unit_time_secs: float = 0.01 # unit time per frame in seconds, equal to `window_stride` in ASR configs.
audio_type: str = "wav"
# Output settings, no need to change
output_dir: Optional[str] = None # will be automatically set by the program
output_filename: Optional[str] = None # will be automatically set by the program
pred_name_postfix: Optional[str] = None # If you need to use another model name, rather than standard one.
# Set to True to output language ID information
compute_langs: bool = False
# Decoding strategy for CTC models
ctc_decoding: CTCDecodingConfig = CTCDecodingConfig()
# Decoding strategy for RNNT models
rnnt_decoding: RNNTDecodingConfig = RNNTDecodingConfig(fused_batch_size=-1)
@hydra_runner(config_name="InferenceConfig", schema=InferenceConfig)
def main(cfg):
if is_dataclass(cfg):
cfg = OmegaConf.structured(cfg)
if cfg.output_dir is None:
cfg.output_dir = "./outputs"
output_dir = Path(cfg.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
# setup profiling, note that profiling will significantly increast the total runtime
if cfg.profiling:
logging.info("Profiling enabled")
profile_fn = profile
record_fn = record_function
else:
logging.info("Profiling disabled")
@contextlib.contextmanager
def profile_fn(*args, **kwargs):
yield
@contextlib.contextmanager
def record_fn(*args, **kwargs):
yield
input_manifest_file = prepare_inference_manifest(cfg)
if cfg.manifest_filepath is None:
cfg.manifest_filepath = str(input_manifest_file)
with profile_fn(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, profile_memory=True
) as prof:
input_manifest_file = extract_audio_features(input_manifest_file, cfg, record_fn)
if cfg.vad_model is not None:
logging.info(f"Running VAD with model: {cfg.vad_model}")
input_manifest_file = run_vad_inference(input_manifest_file, cfg, record_fn)
if cfg.asr_model is not None:
logging.info(f"Running ASR with model: {cfg.asr_model}")
run_asr_inference(input_manifest_file, cfg, record_fn)
if cfg.profiling:
print("--------------------------------------------------------------------\n")
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=15))
print("--------------------------------------------------------------------\n")
logging.info("Done.")
def prepare_inference_manifest(cfg: DictConfig) -> str:
if cfg.audio_dir is not None and cfg.manifest_filepath is None:
manifest_data = []
for audio_file in Path(cfg.audio_dir).glob(f"**/*.{cfg.audio_type}"):
item = {"audio_filepath": str(audio_file.absolute()), "duration": 1000000, "offset": 0}
manifest_data.append(item)
parent_dir = Path(cfg.audio_dir)
else:
manifest_data = read_manifest(cfg.manifest_filepath)
parent_dir = Path(cfg.manifest_filepath).parent
new_manifest_data = []
for item in manifest_data:
audio_file = Path(item["audio_filepath"])
if len(str(audio_file)) < 255 and not audio_file.is_file() and not audio_file.is_absolute():
new_audio_file = parent_dir / audio_file
if new_audio_file.is_file():
item["audio_filepath"] = str(new_audio_file.absolute())
else:
item["audio_filepath"] = os.path.expanduser(str(audio_file))
else:
item["audio_filepath"] = os.path.expanduser(str(audio_file))
item["label"] = "infer"
item["text"] = "-"
new_manifest_data.append(item)
new_manifest_filepath = str(Path(cfg.output_dir) / Path("temp_manifest_input.json"))
write_manifest(new_manifest_filepath, new_manifest_data)
return new_manifest_filepath
def extract_audio_features(manifest_filepath: str, cfg: DictConfig, record_fn: Callable) -> str:
file_list = []
manifest_data = []
out_dir = Path(cfg.output_dir) / Path("features")
new_manifest_filepath = str(Path(cfg.output_dir) / Path("temp_manifest_input_feature.json"))
if Path(new_manifest_filepath).is_file():
logging.info("Features already exist in output_dir, skipping feature extraction.")
return new_manifest_filepath
has_feat = False
with open(manifest_filepath, 'r', encoding='utf-8') as fin:
for line in fin.readlines():
item = json.loads(line.strip())
manifest_data.append(item)
file_list.append(Path(item['audio_filepath']).stem)
if "feature_file" in item:
has_feat = True
if has_feat:
logging.info("Features already exist in manifest, skipping feature extraction.")
return manifest_filepath
out_dir.mkdir(parents=True, exist_ok=True)
torch.set_grad_enabled(False)
vad_model = EncDecClassificationModel.from_pretrained("vad_multilingual_marblenet")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vad_model = vad_model.to(device)
vad_model.eval()
vad_model.setup_test_data(
test_data_config={
'batch_size': 1,
'vad_stream': False,
'sample_rate': cfg.sample_rate,
'manifest_filepath': manifest_filepath,
'labels': ['infer',],
'num_workers': cfg.num_workers,
'shuffle': False,
}
)
logging.info(f"Extracting features on {len(file_list)} audio files...")
with record_fn("feat_extract_loop"):
for i, test_batch in enumerate(tqdm(vad_model.test_dataloader(), total=len(vad_model.test_dataloader()))):
test_batch = [x.to(vad_model.device) for x in test_batch]
with autocast():
with record_fn("feat_extract_infer"):
processed_signal, processed_signal_length = vad_model.preprocessor(
input_signal=test_batch[0], length=test_batch[1],
)
with record_fn("feat_extract_other"):
processed_signal = processed_signal.squeeze(0)[:, :processed_signal_length]
processed_signal = processed_signal.cpu()
outpath = os.path.join(out_dir, file_list[i] + ".pt")
outpath = str(Path(outpath).absolute())
torch.save(processed_signal, outpath)
manifest_data[i]["feature_file"] = outpath
del test_batch
logging.info(f"Features saved at: {out_dir}")
write_manifest(new_manifest_filepath, manifest_data)
return new_manifest_filepath
def run_vad_inference(manifest_filepath: str, cfg: DictConfig, record_fn: Callable) -> str:
logging.info("Start VAD inference pipeline...")
vad_model = init_vad_model(cfg.vad_model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vad_model = vad_model.to(device)
vad_model.eval()
vad_yaml = Path(cfg.vad_config)
if not vad_yaml.is_file():
raise ValueError(f"VAD config file not found: {cfg.vad_config}")
with vad_yaml.open("r") as fp:
vad_cfg = yaml.safe_load(fp)
vad_cfg = DictConfig(vad_cfg)
test_data_config = {
'vad_stream': True,
'manifest_filepath': manifest_filepath,
'labels': ['infer',],
'num_workers': cfg.num_workers,
'shuffle': False,
'window_length_in_sec': vad_cfg.vad.parameters.window_length_in_sec,
'shift_length_in_sec': vad_cfg.vad.parameters.shift_length_in_sec,
}
vad_model.setup_test_data(test_data_config=test_data_config, use_feat=True)
pred_dir = Path(cfg.output_dir) / Path("vad_frame_pred")
if pred_dir.is_dir():
logging.info(f"VAD frame-level prediction already exists: {pred_dir}, skipped")
else:
logging.info("Generating VAD frame-level prediction")
pred_dir.mkdir(parents=True)
t0 = time.time()
pred_dir = generate_vad_frame_pred(
vad_model=vad_model,
window_length_in_sec=vad_cfg.vad.parameters.window_length_in_sec,
shift_length_in_sec=vad_cfg.vad.parameters.shift_length_in_sec,
manifest_vad_input=manifest_filepath,
out_dir=str(pred_dir),
use_feat=True,
record_fn=record_fn,
)
t1 = time.time()
logging.info(f"Time elapsed: {t1 - t0: .2f} seconds")
logging.info(
f"Finished generating VAD frame level prediction with window_length_in_sec={vad_cfg.vad.parameters.window_length_in_sec} and shift_length_in_sec={vad_cfg.vad.parameters.shift_length_in_sec}"
)
frame_length_in_sec = vad_cfg.vad.parameters.shift_length_in_sec
# overlap smoothing filter
if vad_cfg.vad.parameters.smoothing:
# Generate predictions with overlapping input segments. Then a smoothing filter is applied to decide the label for a frame spanned by multiple segments.
# smoothing_method would be either in majority vote (median) or average (mean)
logging.info("Generating predictions with overlapping input segments")
t0 = time.time()
smoothing_pred_dir = generate_overlap_vad_seq(
frame_pred_dir=pred_dir,
smoothing_method=vad_cfg.vad.parameters.smoothing,
overlap=vad_cfg.vad.parameters.overlap,
window_length_in_sec=vad_cfg.vad.parameters.window_length_in_sec,
shift_length_in_sec=vad_cfg.vad.parameters.shift_length_in_sec,
num_workers=cfg.num_workers,
out_dir=vad_cfg.smoothing_out_dir,
)
logging.info(
f"Finish generating predictions with overlapping input segments with smoothing_method={vad_cfg.vad.parameters.smoothing} and overlap={vad_cfg.vad.parameters.overlap}"
)
t1 = time.time()
logging.info(f"Time elapsed: {t1 - t0: .2f} seconds")
pred_dir = smoothing_pred_dir
frame_length_in_sec = 0.01
# Turn frame-wise prediction into speech intervals
logging.info(f"Generating segment tables with postprocessing params: {vad_cfg.vad.parameters.postprocessing}")
segment_dir_name = "vad_rttm"
for key, val in vad_cfg.vad.parameters.postprocessing.items():
if key == "use_rttm":
continue
segment_dir_name = segment_dir_name + "-" + str(key) + str(val)
segment_dir = Path(cfg.output_dir) / Path(segment_dir_name)
if segment_dir.is_dir():
logging.info(f"VAD speech segments already exists: {segment_dir}, skipped")
else:
segment_dir.mkdir(parents=True)
t0 = time.time()
vad_cfg.vad.parameters.postprocessing.use_rttm = True
segment_dir = generate_vad_segment_table(
vad_pred_dir=pred_dir,
postprocessing_params=vad_cfg.vad.parameters.postprocessing,
frame_length_in_sec=frame_length_in_sec,
num_workers=cfg.num_workers,
out_dir=segment_dir,
)
t1 = time.time()
logging.info(f"Time elapsed: {t1 - t0: .2f} seconds")
logging.info("Finished generating RTTM files from VAD predictions.")
rttm_map = {}
for filepath in Path(segment_dir).glob("*.rttm"):
rttm_map[filepath.stem] = str(filepath.absolute())
manifest_data = read_manifest(manifest_filepath)
for i in range(len(manifest_data)):
key = Path(manifest_data[i]["audio_filepath"]).stem
manifest_data[i]["rttm_file"] = rttm_map[key]
new_manifest_filepath = str(Path(cfg.output_dir) / Path(f"temp_manifest_{segment_dir_name}.json"))
write_manifest(new_manifest_filepath, manifest_data)
return new_manifest_filepath
def generate_vad_frame_pred(
vad_model: EncDecClassificationModel,
window_length_in_sec: float,
shift_length_in_sec: float,
manifest_vad_input: str,
out_dir: str,
use_feat: bool = False,
record_fn: Callable = None,
) -> str:
"""
Generate VAD frame level prediction and write to out_dir
"""
time_unit = int(window_length_in_sec / shift_length_in_sec)
trunc = int(time_unit / 2)
trunc_l = time_unit - trunc
all_len = 0
data = []
with open(manifest_vad_input, 'r', encoding='utf-8') as fin:
for line in fin.readlines():
file = json.loads(line)['audio_filepath'].split("/")[-1]
data.append(file.split(".wav")[0])
logging.info(f"Inference on {len(data)} audio files/json lines!")
status = get_vad_stream_status(data)
with record_fn("vad_infer_loop"):
for i, test_batch in enumerate(tqdm(vad_model.test_dataloader(), total=len(vad_model.test_dataloader()))):
test_batch = [x.to(vad_model.device) for x in test_batch]
with autocast():
with record_fn("vad_infer_model"):
if use_feat:
log_probs = vad_model(processed_signal=test_batch[0], processed_signal_length=test_batch[1])
else:
log_probs = vad_model(input_signal=test_batch[0], input_signal_length=test_batch[1])
with record_fn("vad_infer_other"):
probs = torch.softmax(log_probs, dim=-1)
pred = probs[:, 1]
if status[i] == 'start':
to_save = pred[:-trunc]
elif status[i] == 'next':
to_save = pred[trunc:-trunc_l]
elif status[i] == 'end':
to_save = pred[trunc_l:]
else:
to_save = pred
all_len += len(to_save)
outpath = os.path.join(out_dir, data[i] + ".frame")
with open(outpath, "a", encoding='utf-8') as fout:
for f in range(len(to_save)):
fout.write('{0:0.4f}\n'.format(to_save[f]))
del test_batch
if status[i] == 'end' or status[i] == 'single':
all_len = 0
return out_dir
def init_asr_model(model_path: str) -> ASRModel:
if model_path.endswith('.nemo'):
logging.info(f"Using local ASR model from {model_path}")
asr_model = ASRModel.restore_from(restore_path=model_path)
elif model_path.endswith('.ckpt'):
asr_model = ASRModel.load_from_checkpoint(checkpoint_path=model_path)
else:
logging.info(f"Using NGC ASR model {model_path}")
asr_model = ASRModel.from_pretrained(model_name=model_path)
return asr_model
def run_asr_inference(manifest_filepath, cfg, record_fn) -> str:
logging.info("Start ASR inference pipeline...")
asr_model = init_asr_model(cfg.asr_model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
asr_model = asr_model.to(device)
asr_model.eval()
# Setup decoding strategy
decode_function = None
if hasattr(asr_model, 'change_decoding_strategy'):
# Check if ctc or rnnt model
if hasattr(asr_model, 'joint'): # RNNT model
cfg.rnnt_decoding.fused_batch_size = -1
cfg.rnnt_decoding.compute_langs = cfg.compute_langs
asr_model.change_decoding_strategy(cfg.rnnt_decoding)
decode_function = asr_model.decoding.rnnt_decoder_predictions_tensor
else:
asr_model.change_decoding_strategy(cfg.ctc_decoding)
decode_function = asr_model.decoding.ctc_decoder_predictions_tensor
else:
raise ValueError(f"Only support CTC or RNNT models that have `change_decoding_strategy()` implemented.")
# Compute output filename
if cfg.output_filename is None:
# create default output filename
if cfg.pred_name_postfix is not None:
cfg.output_filename = cfg.manifest_filepath.replace('.json', f'_{cfg.pred_name_postfix}.json')
else:
tag = f"{cfg.normalize}_{cfg.normalize_type}"
if cfg.use_rttm:
vad_tag = Path(manifest_filepath).stem
vad_tag = vad_tag[len("temp_manifest_vad_rttm_") :]
tag += f"-mask{cfg.feat_mask_val}-{vad_tag}"
cfg.output_filename = cfg.manifest_filepath.replace('.json', f'-{Path(cfg.asr_model).stem}-{tag}.json')
cfg.output_filename = Path(cfg.output_dir) / Path(cfg.output_filename).name
logging.info("Setting up dataloader for ASR...")
data_config = {
"manifest_filepath": manifest_filepath,
"normalize": cfg.normalize,
"normalize_type": cfg.normalize_type,
"use_rttm": cfg.use_rttm,
"feat_mask_val": cfg.feat_mask_val,
"frame_unit_time_secs": cfg.frame_unit_time_secs,
}
logging.info(f"use_rttm = {cfg.use_rttm}")
if hasattr(asr_model, "tokenizer"):
dataset = feature_to_text_dataset.get_bpe_dataset(config=data_config, tokenizer=asr_model.tokenizer)
else:
data_config["labels"] = asr_model.decoder.vocabulary
dataset = feature_to_text_dataset.get_char_dataset(config=data_config)
dataloader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=cfg.batch_size,
collate_fn=dataset._collate_fn,
drop_last=False,
shuffle=False,
num_workers=cfg.get('num_workers', 0),
pin_memory=cfg.get('pin_memory', False),
)
logging.info("Start transcribing...")
hypotheses = []
all_hypotheses = []
t0 = time.time()
with autocast():
with torch.no_grad():
with record_fn("asr_infer_loop"):
for test_batch in tqdm(dataloader, desc="Transcribing"):
with record_fn("asr_infer_model"):
outputs = asr_model.forward(
processed_signal=test_batch[0].to(device),
processed_signal_length=test_batch[1].to(device),
)
with record_fn("asr_infer_other"):
logits, logits_len = outputs[0], outputs[1]
current_hypotheses, all_hyp = decode_function(logits, logits_len, return_hypotheses=False,)
hypotheses += current_hypotheses
if all_hyp is not None:
all_hypotheses += all_hyp
else:
all_hypotheses += current_hypotheses
del logits
del test_batch
t1 = time.time()
logging.info(f"Time elapsed: {t1 - t0: .2f} seconds")
logging.info("Finished transcribing.")
# Save output to manifest
input_manifest_data = read_manifest(manifest_filepath)
manifest_data = read_manifest(cfg.manifest_filepath)
groundtruth = []
for i in range(len(manifest_data)):
groundtruth.append(manifest_data[i]["text"])
manifest_data[i]["pred_text"] = hypotheses[i]
manifest_data[i]["feature_file"] = input_manifest_data[i]["feature_file"]
if "rttm_file" in input_manifest_data[i]:
manifest_data[i]["feature_file"] = input_manifest_data[i]["feature_file"]
write_manifest(cfg.output_filename, manifest_data)
if cfg.use_pure_noise:
hypotheses = " ".join(hypotheses)
words = hypotheses.split()
chars = "".join(words)
logging.info("-----------------------------------------")
logging.info(f"Number of hallucinated characters={len(chars)}")
logging.info(f"Number of hallucinated words={len(words)}")
logging.info(f"Concatenated predictions: {hypotheses}")
logging.info("-----------------------------------------")
else:
wer_score = word_error_rate(hypotheses=hypotheses, references=groundtruth)
logging.info("-----------------------------------------")
logging.info(f"WER={wer_score*100:.2f}")
logging.info("-----------------------------------------")
logging.info(f"ASR output saved at {cfg.output_filename}")
return cfg.output_filename
if __name__ == "__main__":
main()
|