feat: update processor
Browse files- processing_valley.py +18 -24
processing_valley.py
CHANGED
@@ -90,17 +90,11 @@ class ValleyProcessor(ProcessorMixin):
|
|
90 |
qwen2vl_processor_config,
|
91 |
)
|
92 |
|
93 |
-
max_pixels = kwargs.get("max_pixels", None)
|
94 |
-
min_pixels = kwargs.get("min_pixels", None)
|
95 |
-
if max_pixels:
|
96 |
-
self.qwen2vl_image_processor.max_pixels = max_pixels
|
97 |
-
if min_pixels:
|
98 |
-
self.qwen2vl_image_processor.min_pixels = min_pixels
|
99 |
-
|
100 |
self.anyres = kwargs.get("anyres", True)
|
101 |
self.grid_pinpoints = kwargs.get("grid_pinpoints", "(1x1),...,(3x3)")
|
102 |
self.only_crop_single_image = kwargs.get("only_crop_single_image", True)
|
103 |
self.use_special_start_end_token = kwargs.get("use_special_start_end_token", True)
|
|
|
104 |
|
105 |
def preprocess_images_siglip(self, images) -> torch.FloatTensor:
|
106 |
if isinstance(images[0], str):
|
@@ -150,25 +144,15 @@ class ValleyProcessor(ProcessorMixin):
|
|
150 |
|
151 |
return data_dict_qwen2vl
|
152 |
|
153 |
-
def preprocess_multimodal(self, conversations
|
154 |
for sentence in conversations:
|
155 |
if sentence["role"] == "system":
|
156 |
continue
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
else:
|
161 |
-
video_replace_token = DEFAULT_IMAGE_TOKEN * img_num
|
162 |
-
sentence["content"] = sentence["content"].replace(DEFAULT_VIDEO_TOKEN, "").strip()
|
163 |
-
sentence["content"] = video_replace_token + "\n" + sentence["content"]
|
164 |
else:
|
165 |
-
|
166 |
-
if self.use_special_start_end_token:
|
167 |
-
sentence["content"] = (DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN).join(
|
168 |
-
segs[: img_num + 1]
|
169 |
-
) + "".join(segs[img_num + 1 :])
|
170 |
-
else:
|
171 |
-
sentence["content"] = DEFAULT_IMAGE_TOKEN.join(segs[: img_num + 1]) + "".join(segs[img_num + 1 :])
|
172 |
|
173 |
return conversations
|
174 |
|
@@ -265,6 +249,13 @@ class ValleyProcessor(ProcessorMixin):
|
|
265 |
|
266 |
|
267 |
def __call__(self, messages, inference=True, **kwargs) -> BatchFeature:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
# Deal with images
|
269 |
if "images" not in messages or not messages["images"] or not messages["images"][0]:
|
270 |
images = [self.black_img]
|
@@ -289,9 +280,12 @@ class ValleyProcessor(ProcessorMixin):
|
|
289 |
assert conversations[-1]["role"] == "user", "the last message should be assistant if inference=True"
|
290 |
|
291 |
# Image preprocess
|
292 |
-
|
|
|
|
|
|
|
293 |
processed_data_dict_qwen2vl = self.preprocess_images_qwen2vl(images)
|
294 |
-
source = self.preprocess_multimodal(conversations
|
295 |
data_dict = self.preprocess_qwen2(source, self.tokenizer, has_image=True, only_mask_system=False, inference=inference)
|
296 |
|
297 |
# Construct batch data
|
|
|
90 |
qwen2vl_processor_config,
|
91 |
)
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
self.anyres = kwargs.get("anyres", True)
|
94 |
self.grid_pinpoints = kwargs.get("grid_pinpoints", "(1x1),...,(3x3)")
|
95 |
self.only_crop_single_image = kwargs.get("only_crop_single_image", True)
|
96 |
self.use_special_start_end_token = kwargs.get("use_special_start_end_token", True)
|
97 |
+
self.only_navit = kwargs.get("only_navit", False)
|
98 |
|
99 |
def preprocess_images_siglip(self, images) -> torch.FloatTensor:
|
100 |
if isinstance(images[0], str):
|
|
|
144 |
|
145 |
return data_dict_qwen2vl
|
146 |
|
147 |
+
def preprocess_multimodal(self, conversations):
|
148 |
for sentence in conversations:
|
149 |
if sentence["role"] == "system":
|
150 |
continue
|
151 |
+
segs = re.split(DEFAULT_IMAGE_TOKEN, sentence["content"])
|
152 |
+
if self.use_special_start_end_token:
|
153 |
+
sentence["content"] = (DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN).join(segs)
|
|
|
|
|
|
|
|
|
154 |
else:
|
155 |
+
sentence["content"] = DEFAULT_IMAGE_TOKEN.join(segs)
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
return conversations
|
158 |
|
|
|
249 |
|
250 |
|
251 |
def __call__(self, messages, inference=True, **kwargs) -> BatchFeature:
|
252 |
+
max_pixels=kwargs.get("max_pixels", self.max_pixels)
|
253 |
+
min_pixels=kwargs.get("min_pixels", self.min_pixels)
|
254 |
+
if max_pixels is not None:
|
255 |
+
self.qwen2vl_image_processor.max_pixels = max_pixels
|
256 |
+
if min_pixels is not None:
|
257 |
+
self.qwen2vl_image_processor.min_pixels = min_pixels
|
258 |
+
|
259 |
# Deal with images
|
260 |
if "images" not in messages or not messages["images"] or not messages["images"][0]:
|
261 |
images = [self.black_img]
|
|
|
280 |
assert conversations[-1]["role"] == "user", "the last message should be assistant if inference=True"
|
281 |
|
282 |
# Image preprocess
|
283 |
+
if self.only_navit:
|
284 |
+
precessed_images_siglip = None
|
285 |
+
else:
|
286 |
+
precessed_images_siglip = self.preprocess_images_siglip(images)
|
287 |
processed_data_dict_qwen2vl = self.preprocess_images_qwen2vl(images)
|
288 |
+
source = self.preprocess_multimodal(conversations)
|
289 |
data_dict = self.preprocess_qwen2(source, self.tokenizer, has_image=True, only_mask_system=False, inference=inference)
|
290 |
|
291 |
# Construct batch data
|