Create README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,87 @@
|
|
1 |
-
---
|
2 |
-
license: gpl-3.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gpl-3.0
|
3 |
+
datasets:
|
4 |
+
- karpathy/tiny_shakespeare
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
---
|
9 |
+
|
10 |
+
## Usage
|
11 |
+
|
12 |
+
```seq_length = 32
|
13 |
+
batch_size = 16
|
14 |
+
embed_dim = 256
|
15 |
+
num_heads = 4
|
16 |
+
ff_dim = 512
|
17 |
+
num_layers = 2
|
18 |
+
noise_prob = 0.3
|
19 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
+
|
21 |
+
class PositionalEncoding(nn.Module):
|
22 |
+
def __init__(self, d_model, max_len=5000):
|
23 |
+
super().__init__()
|
24 |
+
pe = torch.zeros(max_len, d_model)
|
25 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
26 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
|
27 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
28 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
29 |
+
self.register_buffer('pe', pe.unsqueeze(0))
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
return x + self.pe[:, :x.size(1)]
|
33 |
+
|
34 |
+
class TransformerBlock(nn.Module):
|
35 |
+
def __init__(self, embed_dim, num_heads, ff_dim):
|
36 |
+
super().__init__()
|
37 |
+
self.attention = nn.MultiheadAttention(embed_dim, num_heads)
|
38 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
39 |
+
self.ff = nn.Sequential(
|
40 |
+
nn.Linear(embed_dim, ff_dim),
|
41 |
+
nn.ReLU(),
|
42 |
+
nn.Linear(ff_dim, embed_dim)
|
43 |
+
)
|
44 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
attn_output, _ = self.attention(x, x, x)
|
48 |
+
x = self.norm1(x + attn_output)
|
49 |
+
ff_output = self.ff(x)
|
50 |
+
return self.norm2(x + ff_output)
|
51 |
+
|
52 |
+
class DenoisingTransformer(nn.Module):
|
53 |
+
def __init__(self, vocab_size, embed_dim, num_heads, ff_dim, num_layers):
|
54 |
+
super().__init__()
|
55 |
+
self.embedding = nn.Embedding(vocab_size, embed_dim)
|
56 |
+
self.positional_encoding = PositionalEncoding(embed_dim)
|
57 |
+
self.transformer_blocks = nn.ModuleList([
|
58 |
+
TransformerBlock(embed_dim, num_heads, ff_dim) for _ in range(num_layers)
|
59 |
+
])
|
60 |
+
self.fc = nn.Linear(embed_dim, vocab_size)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
x = self.embedding(x)
|
64 |
+
x = self.positional_encoding(x)
|
65 |
+
for block in self.transformer_blocks:
|
66 |
+
x = block(x)
|
67 |
+
return self.fc(x)
|
68 |
+
|
69 |
+
def load_model(path, device='cpu'):
|
70 |
+
checkpoint = torch.load(path, map_location=device)
|
71 |
+
hp = checkpoint['hyperparameters']
|
72 |
+
|
73 |
+
model = DenoisingTransformer(
|
74 |
+
hp['vocab_size'],
|
75 |
+
hp['embed_dim'],
|
76 |
+
hp['num_heads'],
|
77 |
+
hp['ff_dim'],
|
78 |
+
hp['num_layers']
|
79 |
+
).to(device)
|
80 |
+
|
81 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
82 |
+
return model, checkpoint['word2idx'], checkpoint['idx2word']
|
83 |
+
|
84 |
+
loaded_model, word2idx, idx2word = load_model('denoising_transformer.pth', device=device)
|
85 |
+
|
86 |
+
print("Model loaded successfully!")
|
87 |
+
print(f"Model device: {next(loaded_model.parameters()).device}")```
|