File size: 10,371 Bytes
94724ad d605daf 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad 370ac60 94724ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# my_custom_olmoe/modeling_custom.py
import torch
import torch.nn as nn
import torch.nn.functional as F
# 导入官方实现(注意根据你的 transformers 版本调整导入路径)
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP
from .configuration_densebackward_olmoe import DenseBackwardOLMoEConfig
class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
def forward(self, hidden_states: torch.Tensor):
batch_size, seq_length, hidden_dim = hidden_states.shape
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
# 计算路由 logits 和 routing 权重
router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*seq_len, num_experts)
# Top-k 选择
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype)
# ---------- 稀疏计算部分 ----------
# 初始化稀疏输出
sparse_output = torch.zeros((flat_hidden.size(0), hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
# 存储所有激活信息的数据结构
num_tokens = flat_hidden.size(0)
all_activated_outputs = {} # {expert_idx: {token_idx: output_tensor}}
all_routing_indices = {} # {expert_idx: [token_indices]}
token_activated_experts = {} # {token_idx: [activated_expert_indices]}
# one-hot 编码 top-k 专家
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
# 稀疏计算,同时记录激活情况
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.numel() > 0:
current_state = flat_hidden[top_x] # (n, hidden_dim)
current_output = expert_layer(current_state) # (n, hidden_dim)
weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
weighted_output = current_output * weight
sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
# 记录该专家激活的token和对应输出
all_activated_outputs[expert_idx] = {}
all_routing_indices[expert_idx] = top_x.tolist()
for pos, token_idx in enumerate(top_x.tolist()):
# 记录该专家对该token的输出
all_activated_outputs[expert_idx][token_idx] = current_output[pos]
# 记录该token激活的专家
if token_idx not in token_activated_experts:
token_activated_experts[token_idx] = []
token_activated_experts[token_idx].append(expert_idx)
# ---------- 稀疏计算结束 ----------
# ---------- Dense估计部分 ----------
# 将activated_experts 转换为list格式,与路由权重匹配
all_routing = selected_experts.tolist() # 长度为 (B*seq_len)
# 使用已激活信息估计dense输出
dense_outputs = []
for token_idx in range(num_tokens):
# 获取当前token的激活专家列表
activated = all_routing[token_idx] if token_idx in token_activated_experts else []
# 估计dense输出(只使用已经计算过的专家输出)
dense_est = self.estimate_dense_output_efficient(
token_idx=token_idx,
activated=activated,
gate_prob=routing_weights[token_idx],
all_activated_outputs=all_activated_outputs,
all_routing_indices=all_routing_indices,
token_activated_experts=token_activated_experts
)
dense_outputs.append(dense_est.unsqueeze(0))
dense_outputs = torch.cat(dense_outputs, dim=0) # (B*seq_len, hidden_dim)
# ---------- Dense估计结束 ----------
# 使用直通梯度技巧
final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
return final_output, router_logits
def estimate_dense_output_efficient(self, token_idx, activated, gate_prob,
all_activated_outputs, all_routing_indices, token_activated_experts):
"""
优化版本的dense输出估计,只使用已计算的专家输出
"""
num_experts = gate_prob.size(0)
dense_parts = {}
# 对于激活的专家,直接使用其输出
for expert_idx in activated:
if expert_idx in all_activated_outputs and token_idx in all_activated_outputs[expert_idx]:
dense_parts[expert_idx] = all_activated_outputs[expert_idx][token_idx]
# 对于未激活的专家,使用其他token的激活输出估计
non_activated = [i for i in range(num_experts) if i not in activated]
for expert_idx in non_activated:
# 如果该专家没有被任何token激活,跳过
if expert_idx not in all_routing_indices or not all_routing_indices[expert_idx]:
# 使用零向量或平均值作为估计
dense_parts[expert_idx] = torch.zeros_like(next(iter(dense_parts.values()))) if dense_parts else 0
continue
# 找出激活了该专家的token,并且这些token也激活了当前token激活的某些专家
candidate_tokens = []
for other_token in all_routing_indices[expert_idx]:
# 检查other_token是否与当前token共享某些激活专家
if other_token in token_activated_experts:
common_experts = set(activated) & set(token_activated_experts[other_token])
if common_experts:
candidate_tokens.append(other_token)
# 如果找到了候选token,使用它们的输出平均值
if candidate_tokens:
expert_outputs = [all_activated_outputs[expert_idx][t] for t in candidate_tokens]
estimated = torch.stack(expert_outputs).mean(dim=0)
else:
# 找不到合适的候选,使用所有激活了该专家的token
expert_outputs = [all_activated_outputs[expert_idx][t] for t in all_routing_indices[expert_idx]]
estimated = torch.stack(expert_outputs).mean(dim=0)
dense_parts[expert_idx] = estimated
# 按路由权重加权求和
estimated_dense = 0
for expert_idx in range(num_experts):
if expert_idx in dense_parts:
estimated_dense += gate_prob[expert_idx] * dense_parts[expert_idx]
return estimated_dense
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
"""
自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块,
以实现 dense backward 功能。
配置类:DenseBackwardOLMoEConfig
"""
config_class = DenseBackwardOLMoEConfig
base_model_prefix = "olmoe"
def __init__(self, config):
# 首先调用父类初始化方法
super().__init__(config)
# 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", torch_dtype=torch.bfloat16)
# 复制预训练模型的状态到当前模型
self.config = pretrained_model.config
self.model = pretrained_model.model
self.vocab_size = pretrained_model.vocab_size
self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
self.num_experts = pretrained_model.num_experts
self.lm_head = pretrained_model.lm_head
# 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
# 此处假设官方模型在 self.model.layers 中组织 decoder 层,
# 且每层中 mlp 模块包含属性 sparse_moe_block。
for layer in self.model.layers:
if hasattr(layer.mlp, "gate"):
print("111")
orig_block = layer.mlp
# 通过直接复制原版属性创建新的块
new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
# 然后手动复制需要共享的属性:
new_block.gate = orig_block.gate
new_block.experts = orig_block.experts
new_block.num_experts = orig_block.num_experts
new_block.top_k = orig_block.top_k
new_block.norm_topk_prob = orig_block.norm_topk_prob
layer.mlp = new_block
print(type(layer.mlp))
# 在调用post_init()前
test_param = self.model.layers[0].mlp.experts[0].up_proj.weight.data[0, 0].item()
print(f"权重示例值(前): {test_param}")
self.post_init()
# 在调用post_init()后
test_param_after = self.model.layers[0].mlp.experts[0].up_proj.weight.data[0, 0].item()
print(f"权重示例值(后): {test_param_after}")
def main():
config = DenseBackwardOLMoEConfig( # 官方模型参数
model_marker="DenseBackward_olmoe_marker",
torch_dtype="bfloat16"
)
# 创建自定义模型实例
model = DenseBackwardOLMoEForCausalLM(config)
print(type(model))
print(type(model.model))
print(type(model.model.layers[0]))
print(type(model.model.layers[0].mlp))
print(type(model.model.layers[0].mlp.experts))
if __name__ == "__main__":
main() |